• Title/Summary/Keyword: BiM

Search Result 1,182, Processing Time 0.035 seconds

Study on the fabrication and the growth mechanism of Bi-2223 superconducting phase by diffusion method (확산법에 의한 Bi-2223 초전도상의 제조 및 성장기구에 관한 연구)

  • 최성환;최효상;한태희;황종선;한병성
    • Electrical & Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.281-288
    • /
    • 1994
  • According to spread volume of B(BiPbCuO) layer, composition ratio and each stage of sintering process, we studied stability of high Tc superconductor phase and generation and growth movement of superconducting phase. The dual layer composed of SrCaCuO and BiPbCuO compound were prepared to develop the Bi-2223 superconductor[108K] through interaction and diffusion during sintering process. The dual layer samples were sintered at 830.deg. C for 0-210 hours. From the result, the optimum conditions were : spread volume(A:B=1:0.6), sintering time(210h) and composition ratio(A:S $r_{2}$C $a_{2}$C $u_{2}$- $O_{x}$, B:B $i_{1.9}$P $b_{0.5}$C $u_{3}$ $O_{y}$) at 830.deg. C.. C.C.C.

  • PDF

Development of Bismuth Alloy-Based Anode Material for Lithium-Ion Battery (리튬이온 전지용 Bismuth 합금 기반 음극재 개발)

  • Chi Rong Sun;Jae Hoon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.23-27
    • /
    • 2024
  • Bismuth is a promising anodic for Li-ion batteries (LIBs) due to its adequate operating voltage and high-volume capacity (3,765 mAh cm-3). Nevertheless, inevitable volume expansion during Bi alloy reactions leads to severe capacity loss and cell destruction. To address this, a complex of bismuth alloy nanoparticles (Bi@NC) embedded in an N doping-carbon coating is fabricated via a simple pyrolysis method. Nano-sized bismuth alloys can improve the reaction dynamics through a shortened Li+-ion diffusion path. In addition, the N-doped carbon coating effectively buffers the volume change of bismuth during the extended alloy/dealloy reaction with Li+ ions and maintains an effective conductive network. Based on the Thermogravimetric analysis (TGA) showed high bismuth alloy loading (80.9 wt%) and maintained a high gravimetric capacity of 315 mAh g-1 up to 100 cycles with high volumetric capacity of 845.6 mAh cm-3.

An improvement of MT transfer function estimates using by pre-screening scheme based on the statistical distribution of electromagnetic fields (통계적 사전 처리방법을 통한 MT 전달함수 추정의 향상 기법 연구)

  • Yang Junmo;Kwon Byung-Doo;Lee Duk-Kee;Song Youn-Ho;Youn Yong-Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.273-280
    • /
    • 2005
  • Robust magneto-telluric (MT) response function estimators are now in standard use in electromagnetic induction research. Properly devised and applied, these methods can reduce the influence of unusual data (outlier) in the response (electric field) variable, but often not sensitive to exceptional predictor (magnetic field) data, which are termed leverage points. A bounded influence estimator is described which simultaneously limits the influence of both outlier and leverage point, and has proven to consistently yield more reliable MT response function estimates than conventional robust approach. The bounded influence estimator combines a standard robust M-estimator with leverage weighting based on the statistics of the hat matrix diagonal, which is a standard statistical measure of unusual predictors. Further extensions to MT data analysis are proposed, including a establishment of data rejection criterion which minimize the influence of both electric and magnetic outlier in frequency domain based on statistical distribution of electromagnetic field. The rejection scheme made in this study seems to have an effective performance on eliminating extreme data, which is even not removed by BI estimator, in frequency domain. The effectiveness and advantage of these developments are illustrated using real MT data.

  • PDF

Enhancement of Thermoelectric Properties in Cold Pressed Nickel Doped Bismuth Sulfide Compounds

  • Fitriani, Fitriani;Said, Suhana Mohd;Rozali, Shaifulazuar;Salleh, Mohd Faiz Mohd;Sabri, Mohd Faizul Mohd;Bui, Duc Long;Nakayama, Tadachika;Raihan, Ovik;Hasnan, Megat Muhammad Ikhsan Megat;Bashir, Mohamed Bashir Ali;Kamal, Farhan
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.689-699
    • /
    • 2018
  • Nanostructured Ni doped $Bi_2S_3$ ($Bi_{2-x}Ni_xS_3$, $0{\leq}x{\leq}0.07$) is explored as a candidate for telluride free thermoelectric material, through a combination process of mechanical alloying with subsequent consolidation by cold pressing followed with a sintering process. The cold pressing method was found to impact the thermoelectric properties in two ways: (1) introduction of the dopant atom in the interstitial sites of the crystal lattice which results in an increase in carrier concentration, and (2) introduction of a porous structure which reduces the thermal conductivity. The electrical resistivity of $Bi_2S_3$ was decreased by adding Ni atoms, which shows a minimum value of $2.35{\times}10^{-3}{\Omega}m$ at $300^{\circ}C$ for $Bi_{1.99}Ni_{0.01}S_3$ sample. The presence of porous structures gives a significant effect on reduction of thermal conductivity, by a reduction of ~ 59.6% compared to a high density $Bi_2S_3$. The thermal conductivity of $Bi_{2-x}Ni_xS_3$ ranges from 0.31 to 0.52 W/m K in the temperature range of $27^{\circ}C$ (RT) to $300^{\circ}C$ with the lowest ${\kappa}$ values of $Bi_2S_3$ compared to the previous works. A maximum ZT value of 0.13 at $300^{\circ}C$ was achieved for $Bi_{1.99}Ni_{0.01}S_3$ sample, which is about 2.6 times higher than (0.05) of $Bi_2S_3$ sample. This work show an optimization pathway to improve thermoelectric performance of $Bi_2S_3$ through Ni doping and introduction of porosity.

The study on the cystallization and electrical properties of Ge-Se-Bi system chalcogenide glasses (Ge-Se-Bi chalcogenide glass의 비정질 및 결정화에 따른 전기전도도의 변화)

  • 이명원;강원호;박창만;이기암
    • Electrical & Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.175-183
    • /
    • 1993
  • Amorphous Semicondyctor로서 Chalcogenide계의 Ge-Se-Bi계 비정질화와 결정화 실험을 통하여 전기전도도를 평가코자 하였다. 시료의 조성범위는 G $e_{15-25}$S $e_{65-85}$B $i_{2.5-15B}$의 범위에서 5N의 Ge, Se, Bi metal분말을 사용하였다. 시료는 석영관에 진공 장입후 용융시켜 비정질화 하였다. 이때 열처리 조건은 1000.deg.C에서 10시간 동안 가열하였으며 급냉 조건은 3834.deg.C/sec로 처리하였다. 비정질 sample의 결정화는 결정핵을 형성 시킨 후 온도 변화 및 시간의 변화를 주면서 결정을 성장시켰으며 이때 B $i_{2}$S $e_{3}$와 GeS $e_{2}$ 결정상을 관찰 할 수 있었다. 박막화는 위의 실험에 사용된 Bulk sample을 사용하여 박막을 제작하였으며 유리화 영역은 Ge 15 at%, Se 70 at% 이상, Bi가 10 at% 이하일 때 비정질화가 용이하였다. Bulk의 경우 Ge를 20 at%로 고정시 Bi의 at% 함량이 증가함에 따라 전기전도도가 증가했으며 Bi가 7.5 at%이상일때 급격한 전도도의 증가를 가져왔다. 박막의 경우엔 Bulk sample보다 Bi의 함량이 증가시 더욱 큰 전도도의 증가를 가져왔다. G $e_{20}$S $e_{77.5}$B $i_{2.5}$ 저성의 결정화 경우 330.deg.C에서 4hr 유지시킨 경우가 가장 양호하였다.다.하였다.다.

  • PDF

Microstructure and Electric Properties of Ferroelectric SrBi$_2$Ta$_2$O$_9$ Thin Films Deposited by Modified Rf Magnetron Sputtering Technique (Modified Rf Magnetron Sputtering에 의해 Pt/Ti/SiO$_2$/Si 기판위에 제조된 강유전체 SrBi$_2$Ta$_2$O$_9$ 박막의 미세구조 및 전기적 특성 연구)

  • 양철훈;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.472-478
    • /
    • 1998
  • Ferroelectric SrBi2Ta2O9(SBT) films were deposited on Pt/Ti/SiO2/Si substrates at 50$0^{\circ}C$ using a sintered SBT target Bi and Ta targets by modified rf magnetron sputtering and then were annealed at 80$0^{\circ}C$ for 10min in oxygen ambinet(760 torr) The composition of the SBT films could be easily controlled using the mul-ti-targets. The film composition of {{{{ {Sr }_{0.8 } {Bi }_{2.9 } {Ta}_{2.0 } {O }_{9 } }} was obtained with SBTd sputtering power of 100 W Bi of 25W and Ta of 10 W. A 250nm thick SBT films exhibited a dense and uniform microstructure and showed the remanent polarization(Pr) of 14.4 $\mu$C/cm2 and the coercive field({{{{ {E }_{c } }})of 60 kV/cm at applied voltage of 5 V. The SBT films show practically no polarization fatigue up to {{{{ {10 }_{10 } }} cycles under 5V bipolar pulse. The retention characteristics of the SBT films looked very promising and the leakage current density of the SBT films was about 1.23$\times${{{{ {10 }^{-7 } }}A/c{{{{ {m }^{2 } }} at 120kV/cm.

  • PDF

Effect of the Neighboring Tape′s AC Currents on Transport Current Loss of a Bi-2223 Tape (인접 교류전류가 Bi-2223테이프의 통전손실에 미치는 영향)

  • 류경우;최병주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.251-256
    • /
    • 2001
  • Bi-2223 tapes have been developed for low-field power applications at liquid nitrogen temperature. When the Bi-2223 tapes are used in an application such as a power transmission cable or a power transformer, they are supplied with an AC transport current simultaneously. AC loss taking into account such real applications is a crucial issue for power applications fo the Bi-2223 tapes to be feasible. In this paper, the transport losses for different AC current levels and arrangements of the neighboring tapes have been measured in a 1./5 m long Bi-2223 tape. The significant increase of the transport losses due to neighboring tape's AC currents is observed. An increase of the transport losses caused by a decrease of the Bi-2223 tape's critical current is a minor effect. The measured trasprot losses could not be explained by a dynamic resistance loss based on DC voltage-current characteristics in combination with the neighboring tape's AC currents.The trasport losses do not depend on the frequency of the neighboring tape's AC currents but is arrangements in the range of small current especially.

  • PDF

The effect of $SrSO_{4}$ on Bi2212 HTS tube ($SrSO_{4}$의 첨가량이 Bi2212 고온초전도체 튜브에 미치는 영향)

  • Jung, Seng-Ho;Jang, Gun-Eik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.80-83
    • /
    • 2003
  • $SrSO_4$ were systematically added on Bi2212 from 0 to 10wt% to study the effect of Bi2212 superconductor tube characteristics. After mixing, the melted solution of Bi2212 and $SrSO_4$ was initially poured into the cylinder type of steel mold preheated at $550^{\circ}C$ for 30min and rotated at 1000rpm. Following that, tube was annealed at $840^{\circ}C$ for 72hrs. The tube dimension was 60 in diameter, 60mm in length and 2mm in thickness. XRD data suggests that there was no typical segregation phase related with $SrSO_4$. Well textured grain with typical 2212 phase was observed and average size was $20{\mu}m$. The measured critical current and critical current density of Bi2212 tube added by 5% $SrSO_4$ at 77K were 495A and $202A/cm^2$ respectively.

  • PDF

A Preliminary Study on the Evaluation of Internal Exposure Effect by Radioactive Aerosol Generated During Decommissioning of NPPs by Using BiDAS (BiDAS를 적용한 원전 해체 공정 시 발생되는 방사성 에어로졸의 내부피폭 영향평가 사전 연구)

  • Song, Jong Soon;Lee, Hak Yun;Kim, Sun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.473-478
    • /
    • 2018
  • Radioactive aerosol generated in cutting and melting work during the NPP decommissioning process can cause internal exposure to body through workers' breath. Thus, it is necessary to assess worker internal exposure due to the radioactive aerosol during decommissioning. The actually measured value of the working environment is needed for accurate assessment of internal exposure, but if it is difficult to actually measure that value, the internal exposure dose can be estimated through recommended values such as the fraction of amount of intake and the size of particles suggested by the International Committee on Radiological Protection (ICRP). As for the selection of particle size, this study applied a value of $5{\mu}m$, which is the size of particles considering the worker recommended by the ICRP. As for the amount of generation, the amount of intake was estimated using data on the mass of aerosol generated in a melting facility at a site in Kozloduy, Bulgaria. In addition, using these data, this study calculated the level of radioactivity in the worker's body and stool and conducted an assessment of internal exposure using the BiDAS computer code. The internal exposure dose of Type M was 0.0341 mSv, that of Type S was 0.0909 mSv. The two types of absorption showed levels that were 0.17% and 0.45% of the domestic annual dose limit, respectively.