• Title/Summary/Keyword: Bi-phase

Search Result 874, Processing Time 0.027 seconds

Synthesis and Characterization of Bi2Sr2Ca2Cu3Ox Powders by Ultrasonic Spray Pyrolysis Method (Ultrasonic Spray Pyrolysis 법에 의한 Bi2Sr2Ca2Cu3Ox 분말합성 및 특성평가)

  • Bae, Bung-Su;Jung, Sang-Jin;Lee, Bong;Moon, Chang-Kwun;Choi, Hee-Lack
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.86-91
    • /
    • 2010
  • Superconductor material $Bi_2Sr_2Ca_2Cu_3O_x$(Bi-2223) powders were synthesized by ultrasonic spray pyrolysis method. It is clear that Bi-2223 phase more than Bi-2212 phase was acquired at sufficient synthesized time. Best condition for Bi-2223 phase was synthesizing temperature at $860^{\circ}C$. We also investigated the effects for concentrations and viscosities of starting liquid precursor as well as temperature distribution of reacting furnace. The size of synthesized powder was decreased by decreasing the concentration of starting liquid precursor. Modified reacting furnace with four different temperature heating zones gave us successful results for desirable nano-powder including $Bi_2Sr_2Ca_2Cu_3O_x$ phase. Citric acid addition to starting liquid precursor showed increasing of the size for synthesized powder. Bi-2223 single phase was acquired from Bi2223 and Bi-2212 mixed phases through heat treatment in box furnace at 24 hours.

Characteristics of Co-deposition for Bi-superconductor Thin Film Using Ion Beam Sputtering Method (IBS 법으로 제작한 Bi 계 초전도 박막의 동시 증착 특성)

  • 박용필;이준웅
    • Electrical & Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.425-433
    • /
    • 1997
  • BSCCO thin films have been fabricated by co-deposition at an ultralow growth rate using ion beam sputtering(IBS) method. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In order to appreciate stable existing region of Bi 2212 phase with temperature and ozone pressure, the substrate temperature was varied between 655 and 82$0^{\circ}C$ and the highly condensed ozone gas pressure(PO$_3$) in vacuum chamber was varied between 2.0$\times$10$^{-6}$ and 2.3$\times$10$^{-5}$ Torr. Bi 2212 phase appeared in the temperature range of 750 and 795$^{\circ}C$ and single phase of Bi 2201 existed in the lower region than 785$^{\circ}C$. Whereas, PO$_3$dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with T$_{c}$(onset) of about 90 K and T$_{c}$(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as CaCuO$_2$was observed in all of the obtained films.lms.

  • PDF

Study on the deposition Characteristics of Bi Thin Film (Bi 박막의 성막 특성에 관한 연구)

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1071-1074
    • /
    • 2002
  • This paper presents Bi thin films have been fabricated by atomic layer-by-layer deposition and co-deposition at an IBS method. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In order to appreciate stable existing region of Bi 2212 phase with temperature and ozone pressure, the substrate temperature was varied between 655 and $820^{\circ}C$ and the highly condensed ozone gas pressure$(PO_3)$ in vacuum chamber was varied between $2.0{\times}10^{-6}$ and $2.3{\times}10^{-5}Torr$. Bi 2212 phase appeared in the temperature range of 750 and $795^{\circ}C$: and single phase of Bi 2201 existed in the lower region than $785^{\circ}C$. Whereas, $PO_3$ dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with $T_c$(onset) of about 90 K and $T_c$(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as $CaCuO_2$ was observed in all of the obtained films.

  • PDF

The Study of 3-Phase Bi-Directional DC to AC Inverter for the Bi-Model PV PCS (자립형 태양광 발전 시스템을 위한 3상 양방향 DC-AC 인버터 연구)

  • Yang, Seung-Dae;Jung, Seung-Hwan;Choi, Ju-Yeop;Choy, Ick;Lee, Young-Kwon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.319-324
    • /
    • 2012
  • This paper presents the study of 3-Phase bi-directional DC to AC inverter with unity power factor. 3-Phase bi-directional DC to AC inverter is important for the bi-modal PV PCS with an energy storage system. Both Inverting and converting are needed to connect between the grid side and boost converting side to charge and discharge the energy storage system. The paper proposes the appropriate circuit topology and proper control system for the bi-directional inverter. It also proposes the method of selecting the optimum control method considering system stability. PSIM simulation is used to validate the proposed algorithm.

  • PDF

Magnetic and Structural Properties of MnBi1-xTix Alloys

  • Zhang, Suyin;Zhang, Pengyue;Jiang, HuanChang;Shi, Yaojun;Yu, Nengjun;Ge, Hongliang
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.205-209
    • /
    • 2014
  • $MnBi_{1-x}Ti_x$ (x = 0, 0.4, 0.7, 1) alloys were prepared by arc-melting, followed by heat treatment. X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) were used to measure and investigate the phase structure and magnetic properties. The temperature dependent magnetization curves indicate that the phase transitions between LTP and HTP MnBi occur with heating or cooling in $MnBi_{1-x}Ti_x$ ($x{\leq}0.7$) samples. However, MnTi samples are in $Mn_2Ti$ single-phase, with very low magnetic properties. Furthermore, the coercivity exhibits a positive temperature coefficient. The results show that the optimal content of Ti for the coercivity of $MnBi_{1-x}Ti_x$ alloy is x = 0.4. For MnBi sample, the coercivity reaches a maximum value of 1.13 T at 550 K. However, the remanence and energy product show apparent decrease with the addition of Ti in $MnBi_{1-x}Ti_x$ alloys.

Superconducting Characteristics of Bi Thin Films Fabricated by Ion Beam Sputtering (이온빔 스퍼터법으로 제작한 Bi 박막의 초전도 특성)

  • 이희갑;박용필;오금곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.222-225
    • /
    • 2000
  • BSCCO thin films have been fabricated by co-deposition at an ultralow growth rate using ion beam sputtering(IBS) method. Bi 2212 phase appeared in the temperature range of 750 and $795^{\circ}C$ and single phase of Bi 2201 existed in the lower region than $785^{\circ}C$. Whereas, $Po_3$ dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with $T_c$ (onset) of about 90 K and $T_c$(zero) of about 45 K is obtained. Only a smd amount of CuO in some films was observed as impurity, and no impurity phase such as $CaCuO_2$ was observed in d of the obtained films.

  • PDF

Exsolution of $Bi_4Ge_3O_12$ in $Bi_12GeO_20$ Crystals Grown by Pulling Method (인상 육성한 $Bi_12GeO_20$ 결정내의 $Bi_4Ge_3O_12$석출상)

  • 이태근;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.12
    • /
    • pp.981-988
    • /
    • 1991
  • Various crystal defects such as voids, inclusions dislocations, stacking faults and precipitates were observed in the Czochralski-grown Bi12GeO20 crystals. Particularly, precipitates were found in the whole crystals. The phase of these precipitates was identified as Bi4Ge3O12 by EPMA and transmission electron microscopy. The precipitates were produced by pulling rapidly from a non-stoichiometric charge. During the pulling of Bi12GeO20 crystals, the melt composition of stoichiometric charge was changed Bi-deficent with gradual volatilization of Bi2O3. Precipition of the second phase may have been affected by an abrube thermal stress. By adding excess Bi2O3 into the stoichiometric batch, the precipitation of Bi4Ge3O12 was suppressed. At a pulling speed of 2 mm/hr, clear and precipitate from crystals of Bi12GeO20 were grown from the melt of the Bi2O3 excess charge.

  • PDF

Analysis of MOSFET Failure Modes in Bi-directional Phase-Shift Full-Bridge Converters

  • Oh, Chang-Yeol;Sung, Won-Yong;Kim, Yun-Sung;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1692-1699
    • /
    • 2015
  • This paper presents an analysis of the mechanism of failure modes in bi-directional phase-shift full-bridge converters, composed of MOSFET, based on the circuit operation and parasitic parameters of MOSFET. In addition, the relation between circuit operation and parameters is suggested through an experimental comparison. From this relation, the suitable ranges of parameters for stable performance are analyzed. The design criteria of the bi-directional phase-shift full-bridge converter are presented and evaluated from the experimental verification.

Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition (공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석)

  • An, In-Soon;Chun, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_{2}O_{3}$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

Evaluation of Sticking Coefficient in BSCCO Thin Film Fabricated by Co-sputtering

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Kwon-Hyun;Lee, Joon-Ung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.80-84
    • /
    • 2000
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coeffi-cient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below 73$0^{\circ}C$ and decreases linearly with temperature over 73$0^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi\ulcornerO\ulcorner, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF