• Title/Summary/Keyword: Bi-directional

Search Result 986, Processing Time 0.024 seconds

Network-Coded Bi-Directional Relaying Over an Asymmetric Channel (비대칭 채널에서의 네트워크 코딩 기반 양방향 릴레이 전송 기법)

  • Ryu, Hyun-Seok;Lee, Jun-Seok;Kang, Chung G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.3
    • /
    • pp.172-179
    • /
    • 2013
  • In this paper, we consider network-coded bi-directional relaying (NCBR) schemes over an asymmetric channel, in which bi-directional links have the different channel quality, as well as the asymmetric traffic load. In order to deal with asymmetric nature, two different types of NCBR schemes are considered: network coding after padding (NaP) and network coding after fragmentation (NaF). Even if NaP has been known as only a useful means of dealing with the asymmetry in traffic load up to now, our analysis shows that its gain can be significantly lost by the asymmetry in channel quality, under the given bit error performance constraint. Furthermore, it is shown that NaF always outperforms NaP, as well as traditional bi-directional relaying scheme.

Optimized Design of Bi-Directional Dual Active Bridge Converter for Low-Voltage Battery Charger

  • Jeong, Dong-Keun;Ryu, Myung-Hyo;Kim, Heung-Geun;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.468-477
    • /
    • 2014
  • This study proposes an optimized design of a dual active bridge converter for a low-voltage charger in a military uninterrupted power supply (UPS) system. The dual active bridge converter is among various bi-directional DC/DC converters that possess a high-efficiency isolated bi-directional converter. In the general design, the zero-voltage switching(ZVS) region is reduced when the battery voltage is high. By contrast, efficiency is low because of high conduction losses when the battery voltage is low. Variable switching frequency is applied to increase the ZVS region and the power conversion efficiency, depending on battery voltage changes. At the same duty, the same power is obtained regardless of the battery voltage using the variable switching frequency. The proposed method is applied to a 5 kW prototype dual active bridge converter, and the experimental results are analyzed and verified.

Parallel Operation of Three-Phase Bi-Directional Isolated Interleaved DC-DC Converters for The Battery Charge/Discharge System (배터리 충·방전기 시스템에 적용되는 3상 양방향 절연형 인터리브드 DC-DC 컨버터의 병렬운전)

  • Jo, Hyunsik;Lee, Jaedo;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Recently, parallel operation of dc-dc converters has been widely used in distributed power systems. In this paper, a control method to achieve parallel operation of three-phase bi-directional isolated interleaved dc-dc converters is discussed for the battery charging and discharging system which consists of the 32 battery charger/dischargers and two three-phase bi-directional isolated interleaved dc-dc converters. In the boost mode, the battery energy is delivered to the grid, whereas the grid energy is transferred to the battery in the buck mode operation. The average current sharing control method is employed to obtain an equal conducting of each phase current in the three-phase dc-dc converter. By using the proposed method, the imbalance factor is gratefully reduced from 8 percent to 1 percent. Two 2.5kW three-phase bi-directional dc-dc converter prototype have been built and the proposed method has been verified through experiments.

Experiment of a Liquid Damper Controlling Bi-directional Wind Responses of a Tall Building (초고층 건물의 양방향 풍응답 제어를 위한 액체댐퍼 실험)

  • Lee, Hye-Ri;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.287-295
    • /
    • 2010
  • This study deals with the design of a bi-directional damper using a tuned liquid damper(TLD) and a tuned liquid column damper(TLCD) for a SDOF building. Two dampers are usually needed to reduce wind-induced responses of tall buildings since they are along and across wind ones. The proposed damper has the advantage of controlling both responses with a single damper. The damper used in this study behaves as both a TLCD in a specific translational direction and a TLD in the other orthogonal direction. This paper presents experimental verification to confirm its control performance. First, shaking table test is carried out to investigate reducing responses by the damper. Control performance of the damper is expressed by the transfer function from shaking table accelerations to SDOF building ones. Testing results show that the damper reduced bi-directional responses of a SDOF building. Also, it reduced torsion responses.

Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM

  • Varun, Katiyar;Ankit, Gupta;Abdelouahed, Tounsi
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.621-640
    • /
    • 2022
  • In the present article, the vibration response of a geometrically imperfect bi-directional functionally graded plate (2D-FGP) with geometric discontinuities and micro-structural defects (porosities) has been investigated. A porosity model has been developed to incorporate the effective material properties of the bi-directional FGP which varies in two directions i.e. along the axial and transverse direction. The geometric discontinuity is also introduced in the plate in the form of a circular cut-out at the center of the plate. The structural kinematic formulation is based on the non-polynomial trigonometric higher-order shear deformation theory (HSDT). Finite element formulation is done using C° continuous Lagrangian quadrilateral four-noded element with seven degrees of freedom per node. The equations of motion have been derived using a variational approach. Convergence and validation studies have been documented to confirm the accuracy and efficiency of the present formulation. A detailed investigation study has been done to evaluate the influence of the circular cut-out, geometric imperfection, porosity inclusions, partial supports, volume fraction indexes (along with the thickness and length), and geometrical configurations on the vibration response of 2D-FGP. It is concluded that after a particular cut-out dimension, the vibration response of the 2D FGP exhibits non-monotonic behavior.

Static and stress analyses of bi-directional FG porous plate using unified higher order kinematics theories

  • Mohamed, Salwa;Assie, Amr E.;Mohamed, Nazira;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.305-330
    • /
    • 2022
  • This article aims to investigate the static deflection and stress analysis of bi-directional functionally graded porous plate (BDFGPP) modeled by unified higher order kinematic theories to include the shear stress effects, which not be considered before. Different shear functions are described according to higher order models that satisfy the zero-shear influence at the top and bottom surfaces, and hence refrain from the need of shear correction factor. The material properties are graded through two spatial directions (i.e., thickness and length directions) according to the power law distribution. The porosities and voids inside the material constituent are described by different cosine functions. Hamilton's principle is implemented to derive the governing equilibrium equation of bi-directional FG porous plate structures. An efficient numerical differential integral quadrature method (DIQM) is exploited to solve the coupled variable coefficients partial differential equations of equilibrium. Problem validation and verification have been proven with previous prestigious work. Numerical results are illustrated to present the significant impacts of kinematic shear relations, gradation indices through thickness and length, porosity type, and boundary conditions on the static deflection and stress distribution of BDFGP plate. The proposed model is efficient in design and analysis of many applications used in nuclear, mechanical, aerospace, naval, dental, and medical fields.

Simulation and Experimentals of a Bi-Directional Converter with Input PFC on SRM System

  • Maged Maged N.F.
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.121-130
    • /
    • 2006
  • This paper presents the performance and efficiency of a drive system incorporating a switched-reluctance motor (SRM) with input power factor correction (PFC). The proposed system consists of a PFC, bi-directional converter, an inverter, and a SRM operating as based voltage source drives (VSD). First, theoretical analysis is made for each identified mode of operation in the drive system. This is followed by comparing the performance of the SRM drive system with and without a PFC circuit. The losses are also calculated for both systems and overall efficiency. Experimental results are presented to prove the theoretical analysis.

The Design of Controller and Modeling for Bi-directional DC-DC Converter including an Energy Storage System (에너지 저장장치를 포함하는 양방향 DC-DC 컨버터 모델링 및 제어기 설계)

  • Kim, Seung-Min;Yang, Seung-Dae;Choi, Ju-Yeop;Choy, Ick;An, Jin-Woong;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.235-244
    • /
    • 2012
  • This paper presents a design and simulation of bi-directional DC/DC boost converter for a fuel cell system. In this paper, we analyze the equivalent model of both a boost converter and a buck converter. Also we propose the controller of bi-directional DC-DC converter, which has buck mode of charging a capacitor and boost mode of discharging a capacitor. In order to design a controller, we draw bode plots of the control-to-output transfer function using specific parameters and incorporate proper compensator in a closed loop. As a result, it has increased PM(Phase Margin) for better dynamic performance. The proposed bi-directional DC-DC converter's 3pole-2zero compensation method has been verified with computer simulation and simulation results obtained demonstrates the validity of the proposed control scheme.

Characteristics of Earthquake Responses of a Rectangular Liquid Storage Tanks Subjected to Bi-directional Horizontal Ground Motions (수평 양방향 지반운동이 작용하는 직사각형 액체저장탱크의 지진응답 특성)

  • Lee, Jin Ho;Lee, Se Hyeok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • Analytical and experimental studies show that the dynamic behavior of liquid storage tanks is significantly influenced by the fluid-structure interaction (FSI). The effects of FSI must be rigorously considered for accurate earthquake analysis and seismic design of liquid storage tanks. In this study, a dynamic analysis of a rectangular liquid storage tank subjected to bi-directional earthquake ground motions is performed and its dynamic characteristics are examined, with the effects of FSI rigorously considered. Hydrodynamic pressure is evaluated using the finite-element approach with acoustic elements and applied to the structure. The responses of the rectangular tank subjected to bi-directional earthquake ground motions are thus obtained. It can be observed that the incident angle of bi-directional horizontal ground motions has significant effects on the dynamic responses of the considered system. Therefore, the characteristics of the system must be considered in its seismic design and performance evaluation.

Development of Wireless Power Transceiver with Bi-directional DC-DC Converter (양방향으로 동작하는 DC-DC Converter를 이용하는 무선 전력 송수신기 개발)

  • Moon, Young-Jin;Yoo, Changsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.111-121
    • /
    • 2014
  • A bi-directional DC-DC converter has been developed for a wireless power transceiver which enables a device to receive and transmit power wireless. Generally, the wireless power transceiver requires two DC-DC covnerter and two external inductors. However, the proposed wireless power transceiver requires only one DC-DC converter and one inductor, allowing small form-factor. The bi-directional DC-DC converter implemented in $0.35{\mu}m$ BCDMOS process operates as a buck converter at the wireless power receiving mode and the power efficiency is 91% when the ouput power is 3W. In the wireless power transmitter mode, the DC-DC converter operates as a boost converter. With the bi-directional DC-DC converter and the proposed efficiency maximizing techniques, the power efficiency of wireless power transceiver is 81.7% in receiver mode and 76.5% in transmitter mode.