• Title/Summary/Keyword: Bi-conservative surface

Search Result 4, Processing Time 0.024 seconds

STUDY ON BCN AND BAN RULED SURFACES IN 𝔼3

  • Abd-Ellah, Hamdy N.;Omran, Abdelrahim Khalifa
    • Korean Journal of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.513-535
    • /
    • 2017
  • As a continuation to the study in [8, 12, 15, 17], we construct bi-conservative central normal (BCN) and bi-conservative asymptomatic normal (BAN) ruled surfaces in Euclidean 3-space ${\mathbb{E}}^3$. For such surfaces, local study is given and some examples are constructed using computer aided geometric design (CAGD).

A Study on the Natural Uranium Contamination Measuring Technology (천연우라늄 오염에 관한 방사선/능 측정기술 연구)

  • 정운수;홍상범;서범경;박진호;조용우;조성원;이정민
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.407-417
    • /
    • 2004
  • This study is to verify radiation detection method by using $\alpha$-spectroscopy and ${\gamma}$-spectroscopy for concretes and components which will be generated during the decommissioning of the uranium conversion plant. Components and inside walls of the building were contaminated with natural uranium materials. Some parts of the stainless steel pipes and concretes of the walls were sampled and analyzed their alpha and gamma activities respectively. Alpha and gamma activities are well matched each other in the range of high activity region to 0.01 Bq/g and gamma activities are over estimated comparing alpha activities corresponded in below 0.005 Bq/g region for the natural uranium of AUC sample. The $^{238}U$ originated from natural products of conversion process could be distinguished by measuring $^{214}Pb$ or $^{214}Bi$ and $^{234}Th$ or $^{234m}Pa$. Uranium contaminations mainly are in the wall surface of the plant. Decontamination process of generating wastes which can be reached tp background level gamma activities measured by gamma spectroscopy can also be used to conservative assessment data.

  • PDF

Relationship between articulation paper mark size and percentage of force measured with computerized occlusal analysis

  • Qadeer, Sarah;Kerstein, Robert;Kim, Ryan Jin-Yung;Huh, Jung-Bo;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • PURPOSE. Articulation paper mark size is widely accepted as an indicator of forceful tooth contacts. However, mark size is indicative of contact location and surface area only, and does not quantify occlusal force. The purpose of this study is to determine if a relationship exists between the size of paper marks and the percentage of force applied to the same tooth. MATERIALS AND METHODS. Thirty dentate female subjects intercuspated into articulation paper strips to mark occlusal contacts on their maxillary posterior teeth, followed by taking photographs. Then each subject made a multi-bite digital occlusal force percentage recording. The surface area of the largest and darkest articulation paper mark (n = 240 marks) in each quadrant (n = 60 quadrants) was calculated in photographic pixels, and compared with the force percentage present on the same tooth. RESULTS. Regression analysis shows a bi-variant fit of force % on tooth (P<.05). The correlation coefficient between the mark area and the percentage of force indicated a low positive correlation. The coefficient of determination showed a low causative relationship between mark area and force ($r^2$ = 0.067). The largest paper mark in each quadrant was matched with the most forceful tooth in that same quadrant only 38.3% of time. Only 6 2/3% of mark surface area could be explained by applied occlusal force, while most of the mark area results from other factors unrelated to the applied occlusal force. CONCLUSION. The findings of this study indicate that size of articulation paper mark is an unreliable indicator of applied occlusal force, to guide treatment occlusal adjustments.

New emerging surface treatment of GFRP Hybrid bar for stronger durability of concrete structures

  • Park, Cheolwoo;Park, Younghwan;Kim, Seungwon;Ju, Minkwan
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.593-610
    • /
    • 2016
  • In this study, an innovative and smart glass fiber-reinforced polymer (GFRP) hybrid bar was developed for stronger durability of concrete structures. As comparing with the conventional GFRP bar, the smart GFRP Hybrid bar can promise to enhance the modulus of elasticity so that it makes the cracking reduced than the case when the conventional GFRP bar is used. Besides, the GFRP Hybrid bar can effectively resist the corrosion of conventional steel bar by the GFRP outer surface on the steel bar. In order to verify the bond performance of the GFRP hybrid bar for structural reinforcement, uniaxial pull-out test was conducted. The variables were the bar diameter and the number of strands and pitch of the fiber ribs. Tensile tests showed a excellent increase in the modulus of elasticity, 152.1 GPa, as compared to that of the pure GFRP bar (50 GPa). The stress-strain curve was bi-linear, so that the ductile performance could be obtained. For the bond test, the entire GFRP hybrid bar test specimens failed in concrete splitting due to higher shear strength resulting in concrete crushing as a function of bar deformation. Investigation revealed that an increase in the number of strands of fiber ribs enhanced the bond strength, and the pitch guaranteed the bond strength of 19.1 mm diameter hybrid bar with 15.9 mm diameter of core section of deformed steel the ACI 440 1R-15 equation is regarded as more suitable for predicting the bond strength of GFRP hybrid bars, whereas the CSA S806-12 prediction is considered too conservative and is largely influenced by the bar diameter. For further study, various geometrical and material properties such as concrete cover, cross-sectional ratio, and surface treatment should be considered.