• Title/Summary/Keyword: Bi-Sr-Ca-Cu-O Superconductor

Search Result 116, Processing Time 0.024 seconds

Effects of Substrate and Sintering Conditions on the Properties of Screen Printed Bi-Pb-Sr-Ca-Cu-O Superconduction Thick Films (Screen printing 방법에 의한 후막형 Bi-Pb-Sr-Ca-Cu-O 초전도체의 소결조건과 기판의 초전도성에 미치는 영향)

  • 김혜동;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.26-30
    • /
    • 1990
  • Bi$\_$0.7/Pb$\_$0.3/Sr$_1$Ca$_1$Cu$\_$1.8/Ox thick films were screen printed on magnesia(MgO), silver and yttrium stabilized zirconia (YSZ) substrates and were sintered in a boat with cover to prevent the evaporation. The high-Tc phase increase and the low-Tc phase and Ca$_2$PbO$_4$ decrease with an increase in sintering temperature from 835$^{\circ}C$ to 860$^{\circ}C$. YSZ substrate interact strongly with the oxide resulting in poor superconductor, while the Ag and MgO substrates were satisfactory to make screen printed superconductors. The Bi$\_$0.7/Pb$\_$0.3/Sr$_1$Ca$_1$Cu$\_$1.8/Ox thick films screen printed both on Ag and MgO substrates show high Tc phase of ~85% and Tc of 96K.

Electrical Properties of a High Tc Superconductor for Renewed Electric Power Energy

  • Lee Sang-Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.371-375
    • /
    • 2006
  • Effects of $Ag_2O$ doping on the electromagnetic properties in the BiSrCaCuO superconductor. The electromagnetic properties of doped and undoped $Ag_2O$ in the BiSrCaCuO superconductor were evaluated to investigate the contribution of the pinning centers. It was confirmed experimentally that a larger amount of magnetic flux was trapped in the $Ag_2O$ doped sample than in the undoped one, indicating that the pinning centers of magnetic flux are related closely to the occurrence of the magnetic effect. We have fabricated superconductor ceramics by the chemical process. A high Tc superconductor with a nominal composition of $Bi_2Sr_2Ca_2Cu_3O_y$ was prepared by the organic metal salts method. Experimental results suggest that the intermediate phase formed before the formation of the superconductor phase may be the most important factor. The relation between electromagnetic properties of Bi HTS and the external applied magnetic field was studied. The electrical resistance of the superconductor was increased by the application of the external magnetic field. But the increase in the electrical resistance continues even after the removal of the magnetic field. The reason is as follows; the magnetic flux due to the external magnetic field penetrates through the superconductor and the penetrated magnetic flux is trapped after the removal of the magnetic flux. During the sintering, doped $Ag_2O$ was converted to Ag particles that were finely dispersed in superconductor samples. It is considered that the area where normal conduction takes place increases by adding $Ag_2O$ and the magnetic flux penetrating through the sample increases. The results suggested that $Ag_2O$ acts to amplify pinning centers of magnetic flux, contributing to the occurrence of the electromagnetic properties.

Growth and characterization of a Bi-Sr-Ca-Cu-O phase by crystal pulling method (Crystal pulling법에 의한 Bi-Sr-Ca-Cu-O계의 결정 성장과 특성 평가)

  • Yoon, D.H.;Sato, N.;Yoshimoto, N.;Yoshizawa, M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 1997
  • The $Bi_2Sr_2Ca_{n-1}Cu_nOy$(BSCCO) phase is well known to be a superconductor having a strong anisotropic behavior. It can be seen that it is difficult to control the growth direction. In this study, we try to grow a Bi-Sr-Ca-Cu-O phase crystal by the crystal pulling method with a seed crystal and crucibel rotation. Relatively large crystals of the order of $5{\times}5{\times}5{\textrm}{mm}^3$ dimensions can be obtained. We also discuss the possible crystallization field of the $BiO_{1.5}$-(Sr, Ca)O-CuO ternary phase diagram, and present some results of the characterization and magnetic measurements on the grown crystal.

  • PDF

Preparation of Bi2O3-PbO-SrO-CaO Coating Sol for Wiring and Superconductivity and Its properties

  • Jung, Jee-Sung;Iwasaki, Mitusnobo;Park, Won-Kyu
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.147-151
    • /
    • 2007
  • Cu-free multi-component sol, of which final oxide composition becomes $Bi_{1.9}Pb{0.35}SrCaO,\;Bi_{1.8}Pb_{0.2}SrCaO\;and\;Bi_{1.5}SrCaO$, respectively, was prepared through sol-gel route and coated on a bare Cu substrate. Starting materials were metal-alkoxides as follows.; [$Bi(OC_{2}H_{5})_{3}\;Pb(O^{1}C_{3}H_{7})_{2},\;Sr(O^{i}C_{3}H_{7})_{2},\;Ca(OC_{2}H_{5})_{2}$] as a reagent grade. Transparent light yellowish sol was obtained in the case of $Bi_{1.9}Pb_{0.35}SrCaO\;and\;Bi_{1.8}Pb_{0.2}SrCaO$ composition and $Bi_{1.5}SrCaO$ composition's sol was light greenish. Each sol was repeatedly dip-coated on Cu substrate four times and pre-heated at $400^{\circ}C$ and finally heat-treated in the range of $740{\sim}900^{\circ}C$. In the results, crystalline phases confirmed by XRD were (2201) orthorhombic and monoclinic phases. However, only $Bi_{1.9}Pb_{0.35}SrCaO_{x}$ composition showed pseudo-superconductive behavior after heat-treatment at $900^{\circ}C$ for 12 seconds and then onset temperature was 77 K, even though it did not exhibit zero resistance below Tc.

Electromagnetic Properties of BiPbSrCaCuO Superconductor (BiPbSrCaCuO 초전도체의 전자기특성)

  • Lee, Sang-Heon;Nam, Sugn-Pill;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1549-1551
    • /
    • 2004
  • The Electromagnetic properties in BiPbSrCaCuO superconductor was studied. In the measurement of current-voltage characteristics, a voltage across the superconducting sample was observed on applying an external magnetic field. The voltage continues to appear the removal of the magnetic field. The appearance of the voltage is ascribed to the trapping of magnetic flux. Depanding on the direction of applied magnetic flux less than 2.5${\times}$10-5 T, the voltage in the magnetized sample increases or decreases. It is considered that mechanism of voltage occurrence can be explained by applying filament model.

  • PDF

Occurrence Mechanism of Magnetic Properties in BiSrCaCuO Superconductor (산화물 초전도체의 자기적 특성 발생 메커니즘)

  • Lee, Sang-Heon
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.439-444
    • /
    • 2006
  • An electromagnetic properties in BiSrCaCuO superconductor were studied. In the measurement of current-voltage properties, the voltage was measured when applying an external magnetic field. The voltage continues to appear after the removal of the magnetic field. This phenomenon was considered as a nonvolatile magnetic effect. The voltage increased with the applied magnetic flux, but it became constant at about $10^{-2}$T. The appearance of the voltage was ascribed to the trapping of magnetic flux.

Nucleation and Growth of Bi-free and Superconducting Phases in Bi2Sr2Ca2.2CuO3Ox (Bi2Sr2Ca2.2CuO3Ox계에서 초전도상과 Bi-free상의 핵생성과 성장)

  • 오용택;신동찬;구재본;이인환;한상철;성태현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.343-350
    • /
    • 2003
  • Using Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ powders prepared by solid state reaction and spray drying method, the nucleation and growth behaviors of superconducting and second phases were investigated during isothermal heat treatment. When the spray drying power was used in contrast with solid state reaction powder, Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ (2223) phase could be formed at the relatively shot time and second phases were much bigger. Quantitative analysis showed that as the heat treatment time increased, more Bi$_2$Sr$_2$Ca$_2$.$_2$Cu$_3$ $O_{x}$ (2212) changed to 2223 and the major second phase was changed from (Sr,Ca)$_{14}$Cu$_{24}$ $O_{x}$(14:24) to (Sr,Ca)$_2$Cu$_1$ $O_{x}$ (2:l). The superconducting phase formed at the relatively short time 14:24 phase. Following the Bi-free phase of 14:24 Phase, but long time was needed in places far from the 14:24 phase. Following the formation of the 2212 phase near the 14:24 phase, the 2223 phase nucleated preferentially at the interface between the 2212 and 14:24 phases. The preferential nuclcation of 2223 was explained by its structural similarity and low Interfacial energy with both the Bi-free and 2212 Phases.12 Phases.

Characteristics of Bi(Pb)-Sr-Ca-Cu-O Superconductor Wire Fabricated using the Billet Insertion Method (Billet 장입 방식을 이용 제조한 Bi(Pb)-Sr-Ca-Cu-O 초전도 선재의 특성)

  • 장건익;유재근;홍계원
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.471-477
    • /
    • 1996
  • During Bi(Pb)-Sr-Ca-Cu-O superconductor wire fabrication the effect of the initial packing density on the final characteristics of superconductor wire was systematically studied. To increase the powder packing density with uniform distribution of superconducting core a billet insertion method processed by CIP was applied instead of the commonly used vibration and ramming method of powder insertion into silver sheath. Compared with the vibration and ramming method the billent insertion technique processed by CIP cause the 30% incre-specimen with 130${\mu}{\textrm}{m}$(core thickness : 45 ${\mu}{\textrm}{m}$)and 5.24 mm width processed at 84$0^{\circ}C$for 200hrs. shows specimen with 130${\mu}{\textrm}{m}$ (core thickness ; 45${\mu}{\textrm}{m}$)and 5.24 mm width processed at 84$0^{\circ}C$ for 200 hrs. shows maximum 34A for Ic and 16, 700 A/cm2 for Ic measured at 77K and 0T. Also the sample rolled 3 times shows maximum 7, 2A for Ic and 11, 000 A/cm2 for 77K and 0T. Based on X-ray experimental results the formation of Bi-2223 and texture were significantly well developed at the interface between the superconducting core and silver sheath as compared with those of the interior area of superconducting core.

  • PDF

Tunneling Spectra in Organic Cu-Pc/$Bi_2Sr_2CaCu_2O_{8+\delta}$ Tunnel Junctions

  • Kim, Sunmi;E, Jungyoon;Lee, Kiejin;Ishbas, Takayuki;Lee, Yang-San
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.41-44
    • /
    • 2001
  • We report the current transport properties of a normal metal/organic conductor/ superconductor tunnel junction as a novel high- $T_{c}$ superconducting three terminal device. The organic copper (II) phthalocyanine (Cu-Pc) layer was used far a polaronic quasiparticle (QP) injector. The injection of polaronic QP from the Cu-Pc interlayer into a superconductor $Bi_2$$Sr_2$$CaCu_2$ $O_{8+}$ $\delta$/(BSCCO) thin film generated a substantially larger nonequilibrium effect as compared to the normal QP injection current. The tunneling spectroscopy of an Au/cu-PC/BSCCO junction exhibited a zero bias conductance peak which may be due to Andreev reflection at a Cu-Pc/d-wave superconductor junction.n..

  • PDF