• Title/Summary/Keyword: Bi-Sn alloy

Search Result 53, Processing Time 0.022 seconds

Characteristics of Sn-1.7Bi-0.7Cu-0.6In Lead-free Solder (Sn-1.7Bi-0.7Cu-0.6In 솔더의 특성 연구)

  • Park, Ji-Ho;Lee, Hee-Yul;Jhun, Ji-Heon;Cheon, Chu-Seon;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.43-48
    • /
    • 2008
  • Characteristics of Sn-1.7%Bi-0.7%Cu-0.6%In (hereafter, SBIC) lead-free solder was investigated in this study. The results from SBIC were compared to other lead-free solders such as Sn-3.5%Ag-0.7%Cu (hereafter, SAC), Sn-0.7%Cu (hereafter, SC), and lead-bearing Sn-37%Pb (hereafter, SP) alloy. Tensile properties of bulk solder, wettability, spreading index, bridge and dross were evaluated. As experimental results, tensile strength and elongation of SBIC was 62.5MPa and 21.5%, respectively. The tensile strength was comparable to that of SP solder. The wetting time of SBIC was 1.2 sec at $250^{\circ}C$, and its wetting properties including wetting force were as good as the SAC alloy. However, wettability of the SC was not so good as the SBIC and SAC. The spreading index of SBIC at $250^{\circ}C$ was 71 %, and it was similar level to those of SAC and SC solders. Bridging was not found for all solders of SBIC, SAC and SC in the range from 240 to $260^{\circ}C$. In dross test at $250^{\circ}C$ for an hour, the amount of dross produced from SBIC was about 57% compared to that from SAC.

A Study on Wetting, Interfacial Reaction and Mechanical Properties between Sn-Bi-Ag System Solders and Cu Substrate (Sn-Bi-Ag계 땜납과 Cu기판과의 젖음성, 계면 반응 및 기계적 성질에 관한 연구)

  • Seo, Youn-Jong;Lee, Kyung-Ku;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.245-251
    • /
    • 1997
  • Solderability, interfacial reaction and mechanical properties of joint between Sn-Bi-Ag base solder and Cu-substrate were studied. Solders were subjected to aging treatments to see the change of mechanical properties for up to 30 days at $100^{\circ}C$, and then also examined the changes of microstructure and morphology of interfacial compound. Sn-Bi-Ag base solder showed about double tensile strength comparing to Pb-Sn eutectic solder. Addition of 0.7wt%Al in the Sn-Bi-Ag alloy increase spread area on Cu substrate under R-flux and helps to reduce the growth of intermetallic compound during heat-treatment. According to the aging experiments of Cu/solder joint, interfacial intermetallic compound layer was exhibited a parabolic growth to aging time. The result of EDS, it is supposed that the soldered interfacial zone was composed of $Cu_6Sn_5$.

  • PDF

Physico-mechanical Properties and Optimum Manufacturing Conditions of Bi-Sn Metal Alloy Impregnated Wood Composites (Bi-Sn 용융합금주입 목재복합체의 최적제조조건 및 물리·기계적 특성)

  • Park, Kye-Shin;Lee, Hwa-Hyoung;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.691-699
    • /
    • 2014
  • In order to improve the dimensional stability and durability of wood, this study attempted to impregnate bismuth (Bi) - tin (Sn) alloy metal with low melting temperature into solid woods of three species such as radiata pine, red oak and white oak, and investigated to determine an optimum condition of manufacturing the metal alloy-wood composites with natural wood grains. These Bi-Sn alloys were chosen for this study because they were harmless to human and melting at low temperatures. The composites resulted in high dimensional stability and low thickness swelling, and also showed much improved performance such as high bending strength, high hardness, high electric conductivity, and high thermal conductivity as floor materials. A proper impregnating condition of all specimens was determined as 10 minutes of the preliminary vacuum time, and $185^{\circ}C$ of the heating temperature. The proper processing condition for radiata pine wood was 2.5 minutes of the pressuring time at the pressure of $10kgf/cm^2$. For red oak wood, 10 minutes of the pressuring time at the pressure of $30kgf/cm^2$ were the proper condition. The proper manufacture conditions for white oak wood was determined as 10 minutes of the pressuring time at the pressure of $50kgf/cm^2$.

Fabrication of Real 3D Shape Components Using Bi-Sn Alloys (Bi-Sn 합금을 이용한 3차원 미세 구조물의 제작기술 개발)

  • Chung, Sung-Il;Park, Sun-Joon;Im, Yong-Gwan;Choi, Jae-Young;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.624-631
    • /
    • 2004
  • In this paper, new replication techniques fur a metal microcomponent having a real 3D shape were introduced. Helical gear was selected as one of a real 3D microcomponents for this study. The helical gear, which was made of photo-curable resin, was fabricated as a master pattern by microstereolithography technology. Then, a silicone rubber mold was fabricated from the master pattern. Lastly, a final bismuth alloy pattern was transferred from the silicone rubber mold by the microcasting process. In this paper, the replication technique is described in detail from the master pattern to the final pattern with some investigation on factors related to the technique.

Relationship Between Microstructure and Electrical Resistivity of Sb-InSb-and Sn-Bi Eutectic Alloys (Sb-InSb및 Sn-Bi공정합금의 미세조직과 전기비저항)

  • Seok, Myeong-Jin;Choe, Gil-Hyeon;Lee, Dong-Cheol;Mun, In-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.97-106
    • /
    • 1994
  • The dependence of the electrical resistivity on the eutectic composition and growth rates was investigated in the unidirectionally solidified Sb-InSb and Sn-Bi eutectic alloy systems, which were generally classified into the groups of f-f and nf-f eutectic system. Sb-InSb alloys containing 26-34wt.% In and Sn-Bi alloys containing 53-65wt.%Bi were prepared in vacuum sealed in a silica tube, and then these were unidirectionally solidified. Electrical resistivity of the specimens prepared by cutting the crystal section in parallel with the transverse direction and by cutting in longitudinal direction was measured. As the growth rate increased, the Sb-InSb and Sn-Bi eutectic alloys showed that the resistivity of longitudinal to the growth direction was increased but that of transverse to the growth direction was decreased. In the case of Sb-InSb eutectic alloy, increas~ng the phase boundary area and decreasing the fiber directionallity caused to increase the $p \; \parallel$ , while increasing the phase boundary area increased the $p \; \\perp$ As expected, the eutectic microstructure could be analysed well in terms of electrical resistivity.

  • PDF

Alloy Design and Evaluation of Sn-Bi-In-Zn Solder Alloys through Thermodynamic Calculation (무연 솔더 Sn-Bi-In-Zn 합금의 열역학적 설계 및 특성 평가)

  • Yun, Seung-Uk;Lee, Byeong-Ju;Lee, Hyeok-Mo
    • Korean Journal of Materials Research
    • /
    • v.7 no.4
    • /
    • pp.303-309
    • /
    • 1997
  • 기존의 전자 기판에서 땜납으로 사용되고 있는 Sn-Pb계 합금을 대체하기 위한 새로운 합금을 개발하기 위하여 열역학을 이용한 상평형계산을 통해 얻은 다원계 상태도를 바탕으로 적정한 녹는점과 용융구간을 가지는 Sn-Bi-In-Zn계 솔더합금을 설계하였다. 설계된 합금을 제작하여 XRD, DSC및 EDX로 분석하여 상의 확인,조성분석 및 고상점과 액상점 등의 녹음 거동을 확인하였다. 또한 열처리에 따른 미세구조의 변화를 관찰하였고, 이러한 조직변화가 기계적 성질에 미치는 영향을 경도실험과 인장실험을 통해 연구하였다.

  • PDF

Mechanical Properties and Microstructural Analysis of Sn-40Bi-X Alloys (Sn-40Bi-X 합금의 기계적 물성과 미세조직 분석)

  • Lee, Jong-Hyun;Kim, Ju-Hyung;Hyun, Chang-Yong
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.79-79
    • /
    • 2010
  • 저온용 무연 솔더의 대표 조성으로 고려되고 있는 Sn-58Bi(융점: $138^{\circ}C$) 공정(eutectic) 조성은 우수한 강도에도 불구하고 연성(ductility) 측면에서의 문제점이 지속적으로 보고되고 있다. 따라서 이 합금계의 연성을 최대로 개선시킬 수 있으면서도 실제 상용화가 가능한 합금 조성의 개발 연구가 요청된다. 본 연구에서는 Sn-Bi 2원계 조성에서 최대의 연성을 나타내는 것으로 보고된 Sn-40Bi 조성에 미량의 합금원소를 첨가함으로써 최대의 연성을 확보하는 한편, 그 연성 특성이 변형속도에 어느 정도 민감한지를 인장 실험을 통해 결정하고자 하였다. 합금원소로는 0.1~0.5 wt%의 Ag, Mn, In, Cu를 선택하였으며, 인장 시편을 제조하여 $10^{-2}$, $10^{-3}$, $10^{-4}\;s^{-1}$의 3종류로 변형속도를 변형시켜가며 응력-변형 곡선(stress-strain curve)을 측정하였고, 조성별, 변형속도별로 최대인장강도(ultimate tensile stress, UTS) 및 연신율 결과들을 정리하였다. 합금원소를 첨가한 조성의 경우는 모든 시험 조건에서 Sn-40Bi보다 우수한 연신률을 나타내는 것으로 측정되었으나, $10^{-2}\;s^{-1}$의 빠른 변형속도에서는 그 향상 정도가 상대적으로 감소하는 경향이 관찰되었다. 특히 Sn-40Bi-0.5Ag 조성의 경우 느린 변형속도에서 특히 눈에 띄는 연신률 값을 나타내며, 모든 변형속도 조건에서 가장 우수한 연성을 나타내었다. 한편 Sn-40Bi-0.1Cu 조성의 경우 변형속도에 따른 연신률의 변화 정도, 즉, 변형속도에 따른 연신률의 민감도가 매우 커 $10^{-4}\;s^{-1}$ 속도에서는 Sn-40Bi-0.5Ag에 버금가는 연신률 값이 측정되었으나, $10^{-2}\;s^{-1}$ 속도에서는 가장 나쁜 연신률 특성을 보여주었다. Sn-40Bi-0.2Mn 조성은 최고의 연신률 향상 특성을 나타내지는 않았으나, In을 첨가한 경우보다는 대체적으로 우수한 연성을 나타내었다. 이상의 각 합금별 연성 특성은 인장시험 전의 미세조직 관찰 결과와 인장시험 후 파면부의 조직변화 관찰 결과로부터 해석되었다. 그 결과 석출상의 형성 여부, 인장 시험 중 재결정 조직의 형성 여부, 라멜라(lamellar) 조직의 분율과 라멜라 간격(lamellar spacing)의 정도 또는 $\beta$-Sn과 라멜라 조직 사이의 결정립계와 라멜라 조직 내 결정립계에서의 슬라이딩 모드(sliding mode) 변형 정도, 석출상의 크기와 분포 정도 등이 연신률 및 변형속도 민감도와 같은 연성 특성에 가장 큰 영향을 미치는 인자인 것으로 분석되었다.

  • PDF

The Solderability and Mechanical Properties of In, Bi Added Sn-9Zn/Cu Joint (In, Bi가 첨가된 Sn-9wt.%Zn/Cu 접합부의 납땜성 및 기계적 성질)

  • Baek, Dae-Hwa;Lee, Kyung-Ku;Lee, Doh-Jae
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.116-121
    • /
    • 2000
  • Interfacial reaction and mechanical properties between Sn-Zn-X ternary alloys(X : 3wt.%In, 4wt.%Bi) and Cu-substrate were studied. Cu/solder joints were subjected to aging treatments for up to 50days to see interfacial reaction at $100^{\circ}C$ and then were examined changes of microstructure and interfacial compound by optical microscopy, SEM and EDS. Cu/solder joints were aged to 30days and then loaded to failure at cross head speed of 0.3 mm $min^{-1}$ to measure tensile strength. According to the results of the solderability test, additions of In and Bi in the Sn-9wt.%Zn solder improve the wetting characteristics of the alloy and lower the melting temperature. Through the EDS and XRD analysis of Cu/Sn-9wt.%Zn solder joint, it was concluded that the intermetallic compound was the ${\gamma}-Cu_5Zn_8$ phase. Cu-Zn intermetallics at Cu/solder interfaces played an important role in both the microstructure evolution and failure of solder joints. Cu/solder joint strength was decreased by aging treatment, and those phenomenon was closely related to the thickening of intermetallic layer at Cu/solder joints.

  • PDF

Oxidation characteristics of solder alloys for the photovoltaic module (태양전지 묘듈용 솔드 합금의 산화 특성)

  • Kim, Hyo Jae;Lee, Young Eun;Lee, Gu;Kang, Gi Hwan;Choi, Byung Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.98-104
    • /
    • 2014
  • Photovoltaic (PV) cell is considered as one of the finest ways to utilize the solar power. A study of improving solar cell's efficiency is important because the lifetime of solar cell is determined by photovoltaic module technology. Therefore, oxidation (and/or corrosion) of solder materials will be one of the primary yield and long-term reliability risk factor. Recently, the development of lead-free solder alloy has been done actively about lead-free solder alloys of the thermodynamic and mechanical properties. However, the oxidation behavior have rarely been investigated In this study, the oxidations of 60 wt% Sn-40 wt% Pb, 62 wt% Sn-36 wt% Pb -2 wt% Ag, 50wt% Sn-48 wt% Bi-2 wt% Ag alloys for the interconnect ribbon after exposure in atmosphere at $100^{\circ}C$ for several times were investigated. The wettability of 62 wt% Sn-36 wt% Pb-2 wt% Ag and 50 wt% Sn-48 wt% Bi-2 wt% Ag solders was also studied to compare with that of 60 wt% Sn-40 wt% Pb alloy. The results howed that the zero cross time and the wetting time of 50 wt% Sn-48 wt% Bi-2 wt% Ag solder were better than other two samples. The surface of tested samples was analyzed by XPS. The XPS result showed that in all samples, SnO grew first and then the mixture of SnO and $SnO_2$ was detected. $SnO_2$ grew predominantly for the long time aging. Moreover XPS depth profile analysis has found surface enrichment of tin oxide.

Manufacturing and Properties of Bi-Sn Impregnated Wood Composites of Juglans nigra (북미산 흑호두나무 Bi-Sn 용융합금 복합체의 제조와 특성)

  • Kang, Seog-Goo;Park, Kye-Shin;Lee, Ho;Seo, In-Soo;Lee, Jong-Shin;Lee, Hwa-Hyoung
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.1
    • /
    • pp.54-62
    • /
    • 2011
  • The metalized wood composites with natural grain of imported Juglans nigra, which was impregnated with low melting alloy were manufactured and evaluated in this study. And the proper manufacturing conditions was also investigated in this study. The low melting alloy with bismuth (Bi) and tin (Sn) which are harmless to humans, was applied to this new composites. The composites showed not only no defects of discoloration, delamination, swelling, and cracking, because of high dimensional stability and low thickness swelling, but also much improved performance such as high bending strength, high hardness, abrasion resistance, high thermal conductivity as floor materials. This study also suggested the proper impregnating condition, such as 10 minutes of the preliminary vacuum time, $186^{\circ}C$ of the heating temperature and 10 minutes of the maintaining pressure time at the pressure of $30kgf/cm^2$. This metalized wood composites showed 7 times higher density than control, great increase in bending strength from $131.8N/mm^2$ to $192.3N/mm^2$, and great increase in hardness from $18.2N/mm^2$ to $90.4N/mm^2$. The composites demonstrated not only high emissivity of 91%, high shilding effectiveness of 92.59∼99.99%, high fire resistance but also great decrease in abrasion depth, water absorption and thickness swelling.

  • PDF