• Title/Summary/Keyword: Bi-Linear Interpolation

Search Result 23, Processing Time 0.011 seconds

A Study on the Geoid Height Determination by GPS (GPS에 의한 지오이드고(高) 결정(決定)에 관(關)한 연구(研究))

  • Kang, Joon Mook;Kim, Hong Jin;Song, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.183-190
    • /
    • 1993
  • Determining accurate geoid height is very important because it is the basis of the 3-D coordinate transformation and determination of the orthometric height. In this study, for determining the geoid height, bi-linear method grounded on the interpolation method, GPS leveling and OSU91A was applied to the $5km{\times}5km$ area and $60km{\times}60km$ area in the latitude $N\;36^{\circ}{\sim}37^{\circ}$ and the longitude $E\;127^{\circ}{\sim}128^{\circ}$. The results obtained by these methods were compared with conventional leveling data. In case of bi-linear method, it was dependent upon the shape of interpolation network and undulation of ground. If leveling data are satisfactory, GPS leveling is more proper than any other method. Also, it is 62 cm that an average difference of GPS leveling and OSU91A. As a result, in order to determine more precise geoid height, the development of local geoid model is a pressing problem to be solved. The result of the research will provide reference data for settling the 3-D coordinate transformation, and it is expected that it will also be applied to determination of 3-D position.

  • PDF

Image Magnification Technique using Improved Surface Characteristics Estimation Method (개선된 곡면 특성 추정 기법을 이용하는 영상 확대 기법)

  • Jung, Soo-Mok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.95-101
    • /
    • 2017
  • In natural images, there is generally locality, and the values of adjacent pixels are similar. It is possible to estimate the curved surface characteristics of the original image using adjacent pixels having similar pixel values. In this paper, after precisely estimating the characteristics of the curved surface existing in the image, interpolation values are obtained so as to faithfully reflect the estimated characteristics of the curved surface, We propose an effective image enlarging method that generates an enlarged image using the obtained interpolation values. The image enlarged by the proposed method maintains the curved surface characteristics of the original image, and thus the image quality of the enlarged image is improved. Experimental results show that the image quality of the proposed method is superior to that of the conventional techniques.

Generation of 2-D Parametric Surfaces with Highly Irregular Boundaries

  • Sarkar, Subhajit;Dey, Partha Pratim
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • The conventional methods of boundary-conformed 2D surfaces generation usually yield some problems. This paper deals with two boundary-conformed 2D surface generation methods, one conventional approach, the linear Coons method, and a new method, boundary-conformed interpolation. In this new method, unidirectional 2D surface has been generated using some of the geometric properties of the given boundary curves. A method of simultaneous displacement of the interpolated curves from the opposite boundaries has been adopted. The geometric properties considered for displacements include weighted combination of angle bisector and linear displacement vectors at all the data-points of the two opposite generating curves. The algorithm has one adjustable parameter that controls the characteristics of transformation of one set of curves from its parents. This unidirectional process has been extended to bi-directional parameterization by superimposing two sets of unidirectional curves generated from both boundary pairs. Case studies show that this algorithm gives reasonably smooth transformation of the boundaries. This algorithm is more robust than the linear Coons method and capable of resolving the 2D boundary-conformed parameterization problems.

Multimodal Medical Image Registration based on Image Sub-division and Bi-linear Transformation Interpolation (영상의 영역 분할과 이중선형 보간행렬을 이용한 멀티모달 의료 영상의 정합)

  • Kim, Yang-Wook;Park, Jun
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • Transforms including translation and rotation are required for registering two or more images. In medical applications, different registration methods have been applied depending on the structures: for rigid bodies such as bone structures, affine transformation was widely used. In most previous research, a single transform was used for registering the whole images, which resulted in low registration accuracy especially when the degree of deformation was high between two images. In this paper, a novel registration method is introduced which is based image sub-division and bilinear interpolation of transformations. The proposed method enhanced the registration accuracy by 40% comparing with Trimmed ICP for registering color and MRI images.

A Study on Lightweight and Optimizing with Generative Adversarial Network Based Video Super-resolution Model (생성적 적대 신경망 기반의 딥 러닝 비디오 초 해상화 모델 경량화 및 최적화 기법 연구)

  • Kim, Dong-hwi;Lee, Su-jin;Park, Sang-hyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1226-1228
    • /
    • 2022
  • FHD 이상을 넘어선 UHD급의 고해상도 동영상 콘텐츠의 수요 및 공급이 증가함에 따라 전반적인 산업 영역에서 네트워크 자원을 효율적으로 이용하여 동영상 콘텐츠를 제공하는 데에 관심을 두게 되었다. 기존 방법을 통한 bi-cubic, bi-linear interpolation 등의 방법은 딥 러닝 기반의 모델에 비교적 인풋 이미지의 특징을 잘 잡아내지 못하는 결과를 나타내었다. 딥 러닝 기반의 초 해상화 기술의 경우 기존 방법과 비교 시 연산을 위해 더 많은 자원을 필요로 하므로, 이러한 사용 조건에 따라 본 논문은 초 해상화가 가능한 딥 러닝 모델을 경량화 기법을 사용하여 기존에 사용된 모델보다 비교적 적은 자원을 효율적으로 사용할 수 있도록 연구 개발하는 데 목적을 두었다. 연구방법으로는 structure pruning을 이용하여 모델 자체의 구조를 경량화 하였고, 학습을 진행해야 하는 파라미터를 줄여 하드웨어 자원을 줄이는 연구를 진행했다. 또한, Residual Network의 개수를 줄여가며 PSNR, LPIPS, tOF등의 결과를 비교했다.

  • PDF

Super-Resolution Algorithm by Motion Estimation with Sub-Pixel Accuracy using 6-Tap FIR Filter (6-Tap FIR 필터를 이용한 부화소 단위 움직임 추정을 통한 초해상도 기법)

  • Kwon, Soon-Chan;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.464-472
    • /
    • 2012
  • In this paper, we propose a new super-resolution algorithm that uses successive frames by applying the block matching motion estimation algorithm. Usually, single frame super-resolution algorithms are based on probability or discrete wavelet transform (DWT) approach to extract high-frequency components of the input image, but only limited information is available for these algorithms. To solve this problem, various multiple-frame based super-resolution algorithms are proposed. The accuracy of registration between frames is a very important factor for the good performance of an algorithm. We therefore propose an algorithm using 6-Tap FIR filter to increase the accuracy of the image registration with sub-pixel unit. Proposed algorithm shows better performance than other conventional interpolation based algorithms such as nearest neighborhood, bi-linear and bi-cubic methods and results in about the same image quality as DWT based super-resolution algorithm.

Real-time Calculation of Geoid Applicable to Embedded Systems (내장형 시스템에 적용 가능한 지오이드의 실시간 결정)

  • Kim, Hyun-seok;Park, Chan-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.374-381
    • /
    • 2020
  • In order to improve the vertical position accuracy, the advantages of GPS and barometric altimeter are combined and used, but in order to fuse the two sensors, the geoid altitude must be compensated. In this paper, we proposed a technique that can calculate geoid altitude in real time even in low-cost embedded systems applied to drones or autonomous vehicles. Since the reference EGM08 is determined by a polynomial of the 2160th order, real-time calculation is impossible in the embedded system. Therefore, by introducing a linear interpolation technique, the amount of calculation was increased, and the storage space was saved by 75% by using the integer geoid height as a grid point. The accuracy of the proposed technique was evaluated through simulation, and it was confirmed that the accuracy of the maximum error is -1.215 m even in the region where the geoid change is rapid.

An Image Interpolation Method using an Improved Least Square Estimation (개선된 Least Square Estimation을 이용한 영상 보간 방법)

  • Lee Dong Ho;Na Seung Je
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10C
    • /
    • pp.1425-1432
    • /
    • 2004
  • Because of the high performance with the edge regions, the existing LSE(Least Square Estimation) method provides much better results than other methods. However, since it emphasizes not oがy edge components but also noise components, some part of interpolated images looks like unnatural. It also requires very high computational complexity and memory for implementation. We propose a new LSE interpolation method which requires much lower complexity and memory, but provides better performance than the existing method. To reduce the computational complexity, we propose and adopt a simple sample window and a direction detector to reduce the size of memory without blurring image. To prevent from emphasizing noise components, the hi-linear interpolation method is added in the LSE formula. The simulation results show that the proposed method provides better subjective and objective performance with love. complexity than the existing method.

Numerical heat transfer analysis methodology for multiple materials with different heat transfer coefficient in unstructured grid for development of heat transfer analysis program for 3 dimensional structure of building (건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 서로 다른 열전도율을 갖는 복합재질 3차원 구조의 비정렬 격자에 대한 전산해석 방법)

  • Lee, Juhee;Jang, Jinwoo;Lee, Hyeonkyun;Lee, Youngjun;Lee, Kyusung
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: Heat transfers phenomena are described by the second order partial differential equation and its boundary conditions. In a three-dimensional structure of a building, the heat transfer phenomena generally include more than one material, and thus, become complicate. The analytic solutions are useful to understand heat transfer phenomena, but they can hardly be applied in engineering or design problems. Engineers and designers have generally been forced to use numerical methods providing reliable results. Finite volume methods with the unstructured grid system is only the suitable means of the analysis for the complex and arbitrary domains. Method: To obtain an numerical solution, a discretization method, which approximates the differential equations, and the interpolation methods for temperature and heat flux between two or more materials are required. The discretization methods are applied to small domains in space and time, and these numerical solutions form the descretized equations provide approximated solutions in both space and time. The accuracy of numerical solutions is dependent on the quality of discretizations and size of cells used. The higher accuracy, the higher numerical resources are required. The balance between the accuracy and difficulty of the numerical methods is critical for the success of the numerical analysis. A simple and easy interpolation methods among multiple materials are developed. The linear equations are solved with the BiCGSTAB being a effective matrix solver. Result: This study provides an overview of discretization methods, boundary interface, and matrix solver for the 3-dimensional numerical heat transfer including two materials.

Iris Image Enhancement for the Recognition of Non-ideal Iris Images

  • Sajjad, Mazhar;Ahn, Chang-Won;Jung, Jin-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1904-1926
    • /
    • 2016
  • Iris recognition for biometric personnel identification has gained much interest owing to the increasing concern with security today. The image quality plays a major role in the performance of iris recognition systems. When capturing an iris image under uncontrolled conditions and dealing with non-cooperative people, the chance of getting non-ideal images is very high owing to poor focus, off-angle, noise, motion blur, occlusion of eyelashes and eyelids, and wearing glasses. In order to improve the accuracy of iris recognition while dealing with non-ideal iris images, we propose a novel algorithm that improves the quality of degraded iris images. First, the iris image is localized properly to obtain accurate iris boundary detection, and then the iris image is normalized to obtain a fixed size. Second, the valid region (iris region) is extracted from the segmented iris image to obtain only the iris region. Third, to get a well-distributed texture image, bilinear interpolation is used on the segmented valid iris gray image. Using contrast-limited adaptive histogram equalization (CLAHE) enhances the low contrast of the resulting interpolated image. The results of CLAHE are further improved by stretching the maximum and minimum values to 0-255 by using histogram-stretching technique. The gray texture information is extracted by 1D Gabor filters while the Hamming distance technique is chosen as a metric for recognition. The NICE-II training dataset taken from UBRIS.v2 was used for the experiment. Results of the proposed method outperformed other methods in terms of equal error rate (EER).