• Title/Summary/Keyword: Ber Performance

Search Result 1,578, Processing Time 0.024 seconds

A Simple Multi-rate Parallel Interference Canceller for the IMT-2000 3GPP System (IMT-2000 3GPP 시스템을 위한 간단한 다중 전송률 병렬형 간섭제거기)

  • Kim, Jin-Kyeom;Oh, Seong-Keun;Sunwoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.12
    • /
    • pp.10-19
    • /
    • 2001
  • In this paper, we propose an effective but simple multi-rate parallel interference canceller(PIC) for the international mobile telecommunications-2000(IMT-2000) 3rd generation partnership project (3GPP) system. For effective multi-rate processing, we define the basic block as one symbol period of the dedicated physical control channel(DPCCH) having the lowest data rate and common to all users. Then, decision and interference cancellation are performed at every basic block. For an asynchronous channel, we propose an advance removal scheme that removes in advance multiple access interference(MAI) due to the next blockof other users with shorter delay. Introducing a pipeline structure at a sample base, we can implement efficiently the PIC using the advance removal scheme with a minimum hardware and no extra computations. Through computer simulations, we analyze the bit error rate(BER) performance of the proposed PIC with respect to signal-to-noise ratio(SNR) and the number of users.

  • PDF

ICI and Compensation Algorithm against Frequency Offset and Phase Noise in SC-FDMA System with Comb Type Pilot (Comb Type 파일럿을 갖는 SC-FDMA에서 주파수 옵셋과 위상 잡음에 의한 ICI와 보상 알고리즘)

  • Ryu, Sang-Burm;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.399-407
    • /
    • 2010
  • SC-FDMA system uses DFT-spreading method for reducing the PAPR of OFDM signal, which improves the power efficiency. Block type pilot is used in SC-FDMA system. However, there are ICI due to the inevitable phase noise and frequency offset that can be generated from the Doppler frequency and inaccuracy between the transceiver oscillators. This ICI definitely degrades the BER performance. To overcome this problem and estimate the channel efficiently, we like to propose ICI compensation algorithm for the SC-FDMA system with comb type pilot. SLM method is additionally included for the PAPR reduction when pilot is assigned in comb type. Finally, it is confirmed that the ICI due to the phase noise and frequency offset is efficiently compensated by the suggested algorithm.

An Improved Decoding Scheme of LCPC Codes (LCPC 부호의 개선된 복호 방식)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.430-435
    • /
    • 2018
  • In this paper, an improved decoding scheme for low-complexity parity-check(LCPC) code with small code length is proposed. The LCPC code is less complex than the turbo code or low density parity check(LDPC) code and requires less memory, making it suitable for communication between internet-of-things(IoT) devices. The IoT devices are required to have low complexity due to limited energy and have a low end-to-end delay time. In addition, since the packet length to be transmitted is small and the signal processing capability of the IoT terminal is small, the LCPC coding system should be as simple as possible. The LCPC code can correct all single errors and correct some of the two errors. In this paper, the proposed decoding scheme improves the bit error rate(BER) performance without increasing the complexity by correcting both errors using the soft value of the modulator output stage. As a result of the simulation using the proposed decoding scheme, the code gain of about 1.1 [dB] was obtained at the bit error rate of $10^{-5}$ compared with the existing decoding method.

Combined Normalized and Offset Min-Sum Algorithm for Low-Density Parity-Check Codes (LDPC 부호의 복호를 위한 정규화와 오프셋이 조합된 최소-합 알고리즘)

  • Lee, Hee-ran;Yun, In-Woo;Kim, Joon Tae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.36-47
    • /
    • 2020
  • The improved belief-propagation-based algorithms, such as normalized min-sum algorithm (NMSA) or offset min-sum algorithm (OMSA), are widely used to decode LDPC(Low-Density Parity-Check) codes because they are less computationally complex and work well even at low SNR(Signal-to-Noise Ratio). However, these algorithms work well only when an appropriate normalization factor or offset value is used. A new method that uses a CMD(Check Node Message Distribution) chart and least-square method, which has been recently proposed, has advantages on computational complexity over other approaches to get optimal coefficients. Furthermore, this method can be used to derive coefficients for each iteration. In this paper, we apply this method and propose an algorithm to derive a combination of normalization factor and offset value for a combined normalized and offset min-sum algorithm to further improve the decoding of LDPC codes. Simulations on the next-generation broadcasting standards, ATSC 3.0 LDPC codes, prove that a combined normalized and offset min-sum algorithm which takes the proposed coefficients as correction coefficients shows the best BER performance among other decoding algorithms.

Reduced Complexity QRD-M Algorithm for Spatial Multiplexing MIMO-OFDM Systems (공간 다중화 MIMO-OFDM 시스템을 위한 복잡도 감소 QRD-M 알고리즘)

  • Mohaisen, Manar;An, Hong-Sun;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.460-468
    • /
    • 2009
  • Multiple-input multiple-output (MIMO) technology applied with orthogonal frequency division multiplexing (OFDM) is considered as the ultimate solution to increase channel capacity without any additional spectral resources. At the receiver side, the challenge resides in designing low complexity detection algorithms capable of separating independent streams sent simultaneously from different antennas. In this paper, we introduce an upper-lower bounded-complexity QRD-M algorithm (ULBC QRD-M). In the proposed algorithm we solve the problem of high extreme complexity of the conventional sphere decoding by fixing the upper bound complexity to that of the conventional QRD-M. On the other hand, ULBC QRD-M intelligently cancels all unnecessary hypotheses to achieve very low computational requirements. Analyses and simulation results show that the proposed algorithm achieves the performance of conventional QRD-M with only 26% of the required computations.

Design of a Frequency Domain Equalizer Algorithm for MBOK DS-UWB System (MBOK DS-UWB 시스템을 위한 주파수 영역 등화기 알고리즘의 설계)

  • Kang, Shin-Woo;Im, Se-Bin;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.1034-1041
    • /
    • 2007
  • In this paper, we propose a FD USE (frequency domain minimum mean square error) equalizer algorithm for MBOK DS-UWB (M-ary bi-orthogonal keying direct sequence UWB) systems considered as a PHY proposal for high-speed wireless communication in IEEE 802.15.TG3a. The conventional FD MMSE equalization scheme has a structural limit due to insertion of the cyclic prefix (CP) in all transmit packets, but the proposed scheme is able to equalize the channel effect without CP. In order to overcome channel estimation error by multipath delay, we introduce a moving FFT and a moving average scheme. Compared with conventional FD MMSE equalizer and the traditional TD (time domain) MMSE-RAKE receiver, the proposed FD MMSE equalizer has better BER performance and we demonstrate this result by computer simulation.

PAPR Reduction in Limited Feedback MIMO Beeamforming OFDM Systems (제한된 되먹임의 송신 빔성형 MIMO OFDM 시스템에서 PAPR 감소 기법)

  • Shin, Joon-Woo;Jeong, Eui-Rim;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.758-766
    • /
    • 2007
  • High peak-to-average power ratio(PAPR) is one of serious problems in the orthogonal frequency division multiplexing(OFDM) systems. This paper proposes a PAPR reduction technique for limited feedback multiple input multiple output(MIMO) OFDM systems. The proposed method is based on the null space of the MIMO channel where a dummy signal is made in the channel's null space and then, subtracted from the original signal to reduce the PAPR. First, we show that a problem occurs when the existing method is directly applied to limited feedback MIMO case. Then, a weight function for the dummy signal is proposed to mitigate the degradation of the receiver performance while still reducing PAPR significantly. The weight function is derived from a constrained nonlinear optimization problem to minimize the mean square error between the received signal and its ideal signal. Simulation results shows that the proposed technique provides about 2.5dB PAPR reduction with 0.2dB bit-error probability loss.

Antenna Selection and Shuffling for DSTTD Systems with Correlated Transmit-Antenna (송신 안테나 사이에 상관관계가 있는 DSTTD 시스템에서 안테나 선택과 뒤섞는 기법)

  • Joung, Jin-Gon;Jeong, Eui-Rim;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.767-774
    • /
    • 2007
  • A new transmit antenna selection and shuffling($AS^2$) method for spatially correlated double space time transmit diversity(DSTTD) systems is proposed. The proposed method allows dumb antennas and the superposition of multiple signals at the same transmit antenna, whereas the conventional methods consider the antenna shuffling(AS) only. According to the simulation result, the proposed method provides a 1.8 dB signal-to-noise ratio(SNR) gain over the conventional methods for spatially correlated transmit antennas. Although the number of candidates for $AS^2$ is much higher than that of AS, it is found that the number of candidates for $AS^2$ can be reduced to 36 by using the characteristics and properties of preprocessing matrices, and among them, only 6 candidates are almost always chosen. Next, we empirically compare the bit-error-rate (BER) performance of the proposed method with the conventional spatial multiplexing(SM) technique with antenna selection. Simulation results show that the proposed method outperforms the SM technique.

Design Philosophy of MIMO OFDM system for Underwater Communication (수중 통신 환경을 위한 MIMO-OFDM 시스템 설계)

  • Han, Dong-Keol;Hui, Bing;Chang, Kyung-Hi;Byun, Sung-Hun;Kim, Sea-Moon;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.22-32
    • /
    • 2011
  • In this paper, we first analyze the differences of underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) systems and conventional terrestrial OFDM system, and give a simple introduction of the backgrounds. By considering the real UWA channel environments, the measured channel data is used to generate the UWA channel model and calculate the relative parameters for underwater OFDM systems. Practical least square (LS) based channel estimation with linear interpolation are adopted to obtain the channel state information (CSI) at receiver side. As multi-input multi-output (MIMO) processing techniques, Alamouti code is implemented and evaluated to perform for space time block coding (STBC) and space frequency block coding (SFBC) for UWA OFDM systems with the MIMO configuration of $2{\times}1$, at the same time, $1{\times}2$ maximum ratio combining (MRC) is performed for the purpose of comparison. The simulation results show that, with perfect channel estimation, SFBC failed to work duo to the serious frequency selectivity of UWA channel environments. When the practical channel estimation is applied, in the case of STBC, the proposed 4-column pilot pattern gives better performance about 7dB than SISO system.

Analysis of nonlinear distortions in OFDM systems (OFDM 시스템의 비선형 왜곡 분석)

  • 전원기;조용수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.976-987
    • /
    • 1998
  • In this paper, the effect of nonllinear distortion, caused by a high-power amplifier(HPA) in an orthogonal frequency division multiplexing (OFDM) system, on the receiver part is analyzed. Since the HPA, which can be modeled by a memeoryless Volterra system, distorts OFDM signals in a nonlinear fashion, the received signal at each subchannel includes the multiplicative distortion of 1-st order as well as additive nonlinear distortion of high-order. the nonlinear distortion can be viewed as a nonlinear interchannel interference (NICI) since it consists of harmonic distortions and intermodulation distortions, produced by oother subchannels affecting the subchannel of interest. In this paper, we analytically derive the variance of NICI in terms of average input power using the volterra model for HPA, and then calculate the bit-effor rate(BER) performance of an OFDM system. Also, we propose a simple method to compensate for the phase distortion in OFDM system amplified by HPA, OFDM system employing 16-QAM constellation input.

  • PDF