• 제목/요약/키워드: Benzyl-type radicals

검색결과 9건 처리시간 0.024초

Substitution Effect on Electronic Transition of Bi-substituted Benzyl-type Radicals: Symmetric Substitution

  • Ahn, Hyeon-Geun;Lee, Gi-Woo;Kim, Tae-Kyu;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.1993-1995
    • /
    • 2007
  • A substitution effect on the electronic transition of bi-substituted benzyl-type radicals was discovered. The origin of the electronic D1 → D0 transition of benzyl-type radicals was red-shifted upon substitution to the benzene ring. For symmetric bi-substituted benzyl-type radicals, it was found that the predicted shift obtained from mono-substituted benzyl-type radicals agreed well with the observation. The reason for this agreement is believed that the substituent contributes independently to the electronic energy. The substitution effect was applied to the symmetric bi-substituted difluoro-, dichloro- and dimethylbenzyl radicals.

Vibronic Spectroscopy of Jet-Cooled Benzyl-type Radicals Produced from 2-Fluoro-4-Chlorotoluene by Corona Discharge

  • Chae, Sang Youl;Yoon, Young Wook;Lee, Sang Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3565-3569
    • /
    • 2013
  • A home-made pinhole-type glass nozzle was employed to generate vibronically excited but jet-cooled benzyl-type radicals from precursor 2-fluoro-4-chlorotoluene with a large amount of carrier gas He, from which the visible vibronic emission spectrum was recorded with a long-path monochromator. From an analysis of the spectrum observed, it was found that two benzyl-type radicals, 2-fluorobenzyl and 2-fluoro-4-chlorobenzyl radicals, were formed from the precursor in corona discharge. The possible pathway for the production of benzyl-type radicals that can explain the spectroscopic observation is herein proposed. In addition, the electronic energy of the $D_1{\rightarrow}D_0$ transition and the vibrational mode frequencies in the $D_0$ state of the 2-fluoro-4-chlorobenzyl radical were determined for the first time.

Alkyl Group Dissociation During Corona Excitation of Alkylbenzenes

  • Yoon, Young-Wook;Lee, Sang-Kuk
    • 대한화학회지
    • /
    • 제55권5호
    • /
    • pp.741-745
    • /
    • 2011
  • Well-resolved vibronic emission spectra were recorded in the visible region from the corona discharge of precursor alkylbenzenes in a technique of corona excited supersonic expansion using a pinhole-type glass nozzle. From the observed spectra, we found the evidence of the presence of benzyl-type radicals generated by dissociation of C-C or C-H bonds of alkyl group. After identification of benzyl-type radicals formed in the corona discharge, we suggest that energy densities in alkyl chain play a crucial role in determining the bond dissociation during corona excitation.

Rearrangement of Benzyl-type Radical in Corona Discharge of 2,6-Dichlorotoluene

  • Yoon, Young-Wook;Lee, Seung-Woon;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2479-2482
    • /
    • 2010
  • Using a pinhole-type glass nozzle equipped for a corona-excited supersonic expansion (CESE), precursor 2,6-dichlorotoluene seeded in a large amount of inert carrier gas helium was discharged to produce jet-cooled but electronically excited benzyl-type radicals. The visible vibronic emission spectrum was recorded with a long-path monochromator to observe vibronic bands in the $D_1{\rightarrow}D_0$ electronic transition of benzyl-type radicals. The spectral analysis revealed the generation of not only the 2,6-dichlorobenzyl radical as a typical product, but also the o-chlorobenzyl radical as an unexpected species, which indicates the possible molecular rearrangement in eliminating a chlorine atom from the benzene ring. A possible mechanism is proposed for the formation of the o-chlorobenzyl radical from the precurs or in the gas phase.

Spectroscopic Identification of Isomeric Trimethylbenzyl Radicals Generated from 1,2,3,4-Tetramethylbenzene

  • Yoon, Young-Wook;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2751-2755
    • /
    • 2011
  • The visible vibronic emission spectrum was recorded from the corona discharge of precursor 1,2,3,4-tetramethylbenzene with a large amount of inert carrier gas helium using a pinhole-type glass nozzle coupled with corona excited supersonic expansion. The spectrum showed a series of vibronic bands in the $D_1{\rightarrow}D_0$ electronic transition of jet-cooled benzyl-type radicals formed from the precursor in a corona excitation. The analysis confirmed that two isomeric radicals, 2,3,4- and 2,3,6-trimethylbenzyl radicals, were produced as a result of removal of a hydrogen atom from the methyl group at different substitution positions. For each isomeric product, the electronic transition and a few vibrational mode frequencies were determined in the ground electronic state.

Isomeric Trimethylbenzyl Radicals Produced by Corona Discharge of 1,2,3,5-Tetramethylbenzene

  • Lee, Gi-Woo;Yoon, Young-Wook;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3389-3394
    • /
    • 2011
  • Isomeric trimethylbenzyl radicals were generated and vibronically excited from precursor 1,2,3,5-tetramethylbenzene, isodurene, with a large amount inert carrier gas helium in a corona excited supersonic expansion (CESE) using a pinhole-type glass nozzle. A long-path monochromator was used to record the visible vibronic emission spectra of the jet-cooled benzyl-type radicals in the $D_1{\rightarrow}D_0$ electronic transition. From the analysis of the spectra, we identified the evidence of the presence of three isomeric trimethylbenzyl radicals in the corona discharge, and obtained the electronic energy and a few vibrational mode frequencies in the ground electronic state for each isomer.

Evidence of Molecular Rearrangement in Benzyl-type Radicals

  • Yoon, Young-Wook;Lee, Seung-Woon;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2783-2785
    • /
    • 2010
  • Searching for new molecular radicals which are believed to play an important role as reaction intermediates in aromatic chain reactions, we have applied the technique of corona excited supersonic expansion employing a pinhole-type glass nozzle to obtain the vibronic spectrum from the corona discharge of precursor 3,5-difluorotoluene with a large amount of inert carrier gas helium. An analysis of the observed spectrum revealed that many vibronic bands are from other isomeric difluorobenzyl radicals generated in the jet by migration of the fluorine atom or methylene group to the adjacent position in the 3,5-difluorobenzyl radical. A possible mechanism was proposed for the formation of other isomers by using a bridged cyclic intermediate structure.