Browse > Article
http://dx.doi.org/10.5012/jkcs.2011.55.5.745

Alkyl Group Dissociation During Corona Excitation of Alkylbenzenes  

Yoon, Young-Wook (Department of Chemistry, Pusan National University)
Lee, Sang-Kuk (Department of Chemistry, Pusan National University)
Publication Information
Abstract
Well-resolved vibronic emission spectra were recorded in the visible region from the corona discharge of precursor alkylbenzenes in a technique of corona excited supersonic expansion using a pinhole-type glass nozzle. From the observed spectra, we found the evidence of the presence of benzyl-type radicals generated by dissociation of C-C or C-H bonds of alkyl group. After identification of benzyl-type radicals formed in the corona discharge, we suggest that energy densities in alkyl chain play a crucial role in determining the bond dissociation during corona excitation.
Keywords
Spectroscopy; Reaction mechanism; Benzyl-type Radical;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Pearse, R. W. B.; Gaydon, A. G. The Identification of Molecular Spectra, 4th ed.; Chapman and Hall: London, UK 1976.
2 Weise, M. L.; Smith, M. W.; Glennon, B. M. Atomic transition Probabilities: NSRD- NBS4, 1966.
3 Banwell, C. N.; McCash, E. M. Fundamentals of Molecular Spectroscopy, 4th ed.; McGraw-Hill: New York, NY, 1994.
4 Suh, M. H.; Lee, S. K.; Miller, T. A. J. Mol. Spectrosc. 1999, 194, 211.   DOI
5 Hiratsu, H.; Mori, K.; Shizuka, H.; Fukushima, M.; Oki, K. Chem. Phys. Lett. 1989, 157, 35.   DOI   ScienceOn
6 Lee, S. K.; Baek, D. Y. Chem. Phys. Lett. 1999, 301, 407.   DOI   ScienceOn
7 Petruska, J. J. Chem. Phys. 1961, 34, 1111.   DOI
8 Atkins, P. W. Physical Chemistry, 6th ed.; Oxford: Oxford, UK, 1998.
9 Lee, G. W.; Ahn, H. G.; Kim, T. K.; Lee, S. K. Chem. Phys. Lett. 2008, 465, 193.   DOI
10 Selco, J. I.; Carrick, P. G. J. Mol. Spectrosc. 1995, 173, 277.   DOI
11 Tan, X. Q.; Wright, T. G.; Miller, T. A. Electronic Spectroscopy of Free Radicals in Supersonic Jets: Jet Spectroscopy and Molecular Dynamics; Hollas, J. M.; Phillip, D., Eds.; Blackie Academic & Professional: London, 1994.
12 Hirota, E. J. Phys. Chem. 1983, 87, 3375.   DOI
13 Selco, S. I.; Carrick, P. G. J. Mol. Spectrosc. 1989, 137, 13.   DOI
14 Schuler, H.; Reinbeck, L.; Kaberle, A. R. Z. Naturforsh 1952, 7A, 421.
15 Porter, G.; Strachan, E. Spectrochim. Acta 1958, 12, 299.   DOI
16 Lin, T.-Y. D.; Tan, X.-Q.; Cerny, T. M.; Williamson, J. M.; Cullin, D. W.; Miller, T. A. Chem. Phys. 1992, 167, 203.   DOI   ScienceOn
17 Fukushima, M.; Obi, K. J. Chem. Phys. 1990, 93, 8488.   DOI
18 Fukushima, M.; Obi, K. J. Chem. Phys. 1992, 96, 4224.   DOI
19 Cossart-Magos, C.; Leach, S. J. Chem. Phys. 1976, 64, 4006.   DOI
20 Carrick, P. G.; Selco, J. I. J. Mol. Spectrosc. 1990, 139, 449.   DOI
21 Lee, S. K. Chem. Phys. Lett. 2002, 358, 110.   DOI   ScienceOn
22 Engelking, P. C. Rev. Sci. Instrum. 1986, 57, 2274.   DOI
23 Han, M. S.; Choi, I. S.; Lee, S. K. Bull. Korean Chem. Soc. 1996, 17, 991.