• Title/Summary/Keyword: Benzyl alcohol

Search Result 156, Processing Time 0.036 seconds

Kinetics of the Oxidation of Substituted Benzyl Alcohols using 6-Methylquinolinium Dichromate (6-Methylquinolinium Dichromate를 이용한 치환 벤질 알코올류의 산화반응 속도)

  • Kim, Young-Sik;Park, Young-Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5990-5996
    • /
    • 2011
  • 6-Methylquinolinium dichromate[$(C_{10}H_9NH)_2Cr_2O_7$] was synthesized by the reaction of 6-methylquinoline with chromium trioxide in $H_2O$, and characterized by IR, ICP. The oxidation of benzyl alcohol using 6-methylquinolinium dichromate in various solvents showed that the reactivity increased with the increase of the dielectric constant(${\varepsilon}$), in the order: cyclohexene < chloroform < acetone < N,N- dimethylformamide. In the presence of hydrochloric acid($H_2SO_4$ solution), 6-methylquinolinium dichromate oxidized benzyl alcohol and its derivatives(p-$OCH_3$, m-$CH_3$, H, m-$OCH_3$, m-Cl, m-$NO_2$) smoothly in DMF. Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant(${\rho}$) was -0.67(303K). The observed experimental data was used to rationalize the hydride ion transfer in the rate-determining step.

Kinetic Study on the Oxidation Reaction of Substituted Benzyl Alcohols by Cr(VI)-Heterocyclic Complex (2,2'-Bipyridinium Dichromate) (크롬(VI)-헤테로고리 착물(2,2'-Bipyridinium Dichromate)에 의한 치환 벤질 알코올류의 산화반응에 대한 속도론적 연구)

  • Kim, Young Sik;Park, Young Cho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.241-246
    • /
    • 2012
  • Cr(VI)-heterocyclic complex (2,2'-bipyridinium dichromate) was synthesized by the reaction between of 2,2'-bipyridine and chromium trioxide in $H_2O$, and characterized by IR and ICP. The oxidation of benzyl alcohol using 2,2'-bipyridinium dichromate in various solvents showed that the reactivity increased with the increase of the dielectric constant, in the order: cyclohexene < chloroform < acetone < N,N-dimethylformamide. In the presence of DMF solvent with acidic catalyst such as $H_2SO_4$ solution, 2,2'-bipyridinium dichromate oxidized the benzyl alcohol and its derivatives (p-$p-OCH_3$, $m-CH_3$, H, $m-OCH_3$, m-Cl, $m-NO_2$). Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant was -0.66 (303 K). The observed experimental data was used to rationalize the hydride ion transfer in the rate-determining step.

A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols Using 2,4'-Bipyridinium Dichromate (2,4'-Bipyridinium Dichromate를 이용한 치환 벤질 알코올류의 산화반응과 반응속도에 관한 연구)

  • Kim, Young Sik;Park, Young Cho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.718-722
    • /
    • 2011
  • 2,4'-Bipyridinium dichromate [$(C_{10}H_8N_2H)_2Cr_2O_7$] was synthesized by the reaction of 2,4'-bipyridinie with chromium trioxide in $H_2O$. The structure was characterized by IR and ICP analysis. The oxidation of benzyl alcohol using 2,4'-bipyridinium dichromate in various solvents showed that the reactivity increased with the increase in the order of the dielectric constant (${\varepsilon}$), in the order : cyclohexene < chloroform < acetone < N,N'-dimethylformamide. In the presence of hydrochloric acid, 2,4'-bipyridinium dichromate effectively oxidized benzyl alcohol and its derivatives ($p-CH_3$, H, m-Br, $m-NO_2$) in N,N'-dimethylformamide. Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant (${\rho}$) was -0.65 at 303 K. The observed experimental data was used to rationalize the hydride ion transfer in the rate-determining step.

Ruthenium을 도입한 Titanium Dioxide의 합성과 산화반응 연구

  • Kim, Yeong-Yong;Gwon, Gi-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.199.2-199.2
    • /
    • 2014
  • Titanium과 Ruthenium의 비율(Ru/Ti = 0.01, 0.03, 0.05, 0.07)을 조절하여 Ruthenium이 도입된 산화타이타늄($TiO_2$)를 수열합성법을 이용하여 합성하였다. TEM 이미지를 통하여 네모난 형태의 나노입자를 확인하였으며 XRD 패턴과 ICP 원소 분석을 통하여 Anatase 형태와 각각 다른 양의 Ruthenium이 도입된 것을 확인하였다. 본 연구에서는 Ruthenium이 도입된 산화타이타늄을 이종상촉매로 사용하여 Benzyl alcohol 및 Benzyl amine의 산화반응에 적용하였으며 특히, Ru/Ti = 0.03인 촉매가 가장 우수한 활성을 보였다.

  • PDF

수산화인회석에 Ru를 도입한 이종상 촉매의 합성및 특성 평가

  • Kim, Dae-Hyeon;Gwon, Gi-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.209.1-209.1
    • /
    • 2014
  • 수산화인회석(Hydroxyapatite)는 뼈와 이빨의 무기물의 주성분으로서 칼슘과 인산염으로 구성된다. 본 실험에서는 다양한 농도의 염기조건(NaOH 0,2,4,5,10 M)하에서 서로 다른 형태의 수산화인회석을 수열합성법(hydrothermal method)을 이용해 합성하였다. 합성된 각각의 수산화인회석을 XRD로 확인하였고 일정 농도 이하에서는 octacalcium phosphate이 함께 존재한다는 것을 확인하였다. 수산화인회석 표면에 Ru를 Ion-exchange 반응을 통하여 도입하였으며, 도입된 표면을 TEM을 확인하였다. Ru를 도입한 수산화인회석을 benzyl alcohol과 benzyl amine을 산화반응에 응용하였다.

  • PDF

Intramolecular Esterification by Lipase Powder in Microaqueous Cycohexane (미소 수용 Cyclohexange 중에서 분말 Lipase에 의한 분자내 에스테르화반응)

  • 이민규;감삼규
    • Journal of Life Science
    • /
    • v.5 no.4
    • /
    • pp.155-161
    • /
    • 1995
  • The effects of substrate concentration, enzyme concentration, reaction temperature, and water content were investigated in intramolecular esterification. This study used cyclohexane as organic solvent, power lipase as enzyme, and benzyl alcohol and octanoic acid as substrate. The initial reaction rate was found to be proportional to enzyme concentration; followed Michaelis-Menten equation for octanoic acid; and was inhibited by benzyl alcohol . The observed initial reaction rate first increased, then decreased with increasing reaction temperature, giving rise to the maximum rate at 20$\circ$. The drop in the reaction rate at higher temperature was to partition equilibrium change of substrate between organic solvent and hydration layer of enzyme molecule in addition to the deactivation by enzyme denaturation. Water layer surrounding enzyme molecule seemed to activate in organic solvent and the realistic reaction was done in the water layer. In the enzymatic reaction in organic solvent, the initial reaction rate was influenced by partition quilibrium of substrate, so the optimum condition of substrate concentration, enzyme concentration, reaction temperature, and water content would give a good design tool.

  • PDF

Stability of Red Ginseng Saponin in Aqueous Solution (홍삼사포닌의 수용액에서의 안정성)

  • Lee, Seung-Jin;Kim, Shin-Il;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.4
    • /
    • pp.227-231
    • /
    • 1994
  • The stability of red ginseng saponin in aqueous solution was studied with the acceleration test method. The degradation rate constant of ginsenoside Rb1, an index component of red ginseng saponin, was $2.371{\times}10^{-4}\;day^{-1}$ at $20^{\circ}C$, and the shelf-life was about 570 days. The pH-rate profile demonstrated that the most stable range was pH 6-8. Mannitol and benzyl alcohol, common excipients for injection, exerted no influence on the degradation reaction of ginsenoside Rb1.

  • PDF

Substituent Effects on the Binding Energies of Benzyl Alcohol-H2O Clusters: Ab initio Study

  • Ahn, Doo-Sik;Lee, Sung-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.262-266
    • /
    • 2002
  • Computations are presented for the ortho- and para-substituted benzyl alcohol-$H_2O$ clusters. A variety of conformers are predicted, and their relative energies are compared. Binding energies of the clusters are computed, and detailed analysis is presented on the effects of substitution on the strength of the hydrogen bond in the clusters. F- and $NH_2-$ substituted clusters are studied to analyze the effects of electron-withdrawing and electron-pushing groups. In para-substituted clusters, the inductive effects are dominant, affecting the binding energies in opposite way depending on whether the hydroxyl group is proton-donating or -accepting. For ortho-substituted clusters, more direct involvement of the substituting group and the resulting geometry change of the hydrogen bond should be invoked to elucidate complicated pattern of the binding energy of the clusters.