• Title/Summary/Keyword: Benzoyl peroxide

Search Result 69, Processing Time 0.025 seconds

Combined Repeated Dose and Reproductive/Developmental Toxicities of Benzoyl Peroxide (Benzoyl Peroxide의 반복투여 독성과 생식 및 발생독성)

  • 송상환;김수현;배희경;김미경;구현주;박광식;이상균;박중훈;최은실
    • Toxicological Research
    • /
    • v.19 no.2
    • /
    • pp.123-131
    • /
    • 2003
  • This study was carried out to assess the combined repeated dose, reproduction and developmental toxicities of benzoyl peroxide for OECD SIDS (Screening Information Data Set) program. Male and female Sprague-Dawley rats were exposed to benzoyl peroxide at dose levels of 0, 250, 500 and 1,000 mg/kg/day for 29 days for males and for 41-51 days for females. No deaths were found in all animals including control group during exposure period. No hematological effects attributable to benzoyl peroxide were observed in all treated groups. Significant decrease in the weight of testes and epididymis were observed in males at 1,000 mg/kg/day. In females at 1,000 mg/kg/day, slight histopathological effects in uterus such as epithelial vacuolation or hyperplasia were observed. No treatment-related changes in precoital time and rate of copulation, fertility and gestation period were noted in all treated groups. There was no evidence of teratogenic effect of benzoyl peroxide, but body weight of pups at 1,000 mg/kg/day was significantly decreased. NOAEL for combined repeated dose and reproduction/developmental toxicity was 500 mg/kg/day.

Initial Risk Assessment of Benzoyl peroxide in Environment (Benzoyl peroxide의 환경에서의 초기 위해성 평가)

  • Kim Mi Kyoung;Bae Heekyung;Kim Su-Hyon;Song Sanghwan;Koo Hyunju;Park Kwangsik;Lee Moon-Soon;Jeon Sung-Hwan;Na Jin-Gyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Benzoyl peroxide is a High Production Volume Chemical, which is produced about 1,371 tons/year in Korea as of 2001 survey. The substance is mainly used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. In this study, Quantitative Structure-Activity Relationships (QSAR) are used for getting adequate information on the physical -chemical properties of this chemical. And hydrolysis in water, acute toxicity to aquatic and terrestrial organisms for benzoyl peroxide were studied. The physical -chemical properties of benzoyl peroxide were estimated as followed; vapor pressure=0.00929 Pa, Log $K_{ow}$ = 3.43, Henry's Law constant=3.54${\times}$10$^{-6}$ atm-㎥/mole at $25^{\circ}C$, the half-life of photodegradation=3 days and bioconcentration factor (BCF)=92. Hydrolysis half-life of benzoyl peroxide in water was 5.2 hr at pH 7 at $25^{\circ}C$ and according to the structure of this substance hydrolysis product was expected to benzoic acid. Benzoyl peroxide has toxic effects on the aquatic organisms. 72 hr-Er $C_{50}$ (growth rate) for algae was 0.44 mg/1.,48 hr-E $C_{50}$ for daphnia was 0.07mg/L and the 96hr-L $C_{50}$ of acute toxicity to fish was 0.24mg/L. Acute toxicity to terrestrial organisms (earth worm) of benzoyl peroxide was low (14 day-L $C_{50}$ = > 1,000 mg/kg). Although benzoyl peroxide is high toxic to aquatic organisms, the substance if not bioaccumulated because of the rapid removal by hydrolysis (half-life=5.2 hr at pH 7 at $25^{\circ}C$) and biodegradation (83% by BOD after 21 days). The toxicity observed is assumed to be due to benzoyl peroxide rather than benzoic acid, which shows much lower toxicity to aquatic organisms. One can assume that effects occur before hydrolysis takes place. From the acute toxicity value of algae, daphnia and fish, an assessment factor of 100 was used to determine the predicted no effect concentration (PNEC). The PNEC was calculated to be 0.7$\mu\textrm{g}$/L based on the 48 hr-E $C_{50}$ daphnia (0.07 mg/L). The substance shows high acute toxicity to aquatic organisms and some information indicates wide-dispersive ore of this substance. So this substance is, a candidate for further work, even if it hydrolysis rapidly and has a low bioaccumulation potential. This could lead to local concern for the aquatic environment and therefore environmental exposure assessment is recommended.

Effect of Benzoyl Peroxide on the Activity of Drug-metabolizing Enzyme System and Lipid Peroxidation in Rats (Benzoyl peroxide가 흰쥐의 지질과산화현상에 미치는 영향)

  • Lee, H.W.;Rhee, K.S.;Hong, S.U.
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.55-63
    • /
    • 1982
  • Lipid peroxidation is the reaction of oxidative deterioration of polyunsaturated lipids and this peroxidation involves the direct reaction of oxygen and lipid to form free radical intermediates, which can lead to autocatalysis. As results of the extensive studies on the lipid peroxidation by many authors, the relationship between lipid peroxidation and the drug metabolizing system as well as the actions of free radicals on the peroxidation was reasonably well known. For a long time, the mechanism of hepatotoxicity of $CCl_4$ was not clearly understood. However, it is now quite well established that $CCl_4$ is activated in vivo to a free radical which is a highly reactive molecule. Therefore, lipid peroxidation which induces the reduction of cytochrome P-450 and aminopyrine demethylase activity is known as decisive event of $CCl_4$ hepatotoxicity. On the other hand, it was also reported that singlet molecular oxygen produces lipid peroxidation in liver microsomes. In this study the effects of benzoyl peroxide on the lipid peroxidation and drug-metabolizing enzyme were examined. Benzoyl peroxide mixed with starch and phosphates etc. is usually used as a food additive for flour bleaching and maturing purpose because of its oxidative property. Albino rats were used for the experimental animals. Benzoyl peroxide was suspended in soybean oil and sesame oil and administered intraperitoneally or orally. TBA value and aminopyrine demethylase activity were determined in liver microsomal fraction and serum. The results were summerized as following. 1) Body weights of animals administered benzoyl peroxide suspension were decreased while that of oil administered group were increased. 2) The activity of aminopyrine demethylase was generally decreased in animals administered oil suspension of benzoyl peroxide. Furthermore, the marked reduction of the enzyme activity was observed in animals administered benzoyl peroxide intraperitoneally. 3) Generally, microsomal TBA values as well as serum TBA were significantly elevated in benzoyl peroxide group in comparison with the control group. However, the more remarkable increase of serum TBA than microsomal TBA was observed in animals administered orally for 6 days. 4) Specifically, the changing pattern of TBA value was notable in serum rather than in liver microsome by intraperitoneal administration of benzoyl peroxide.

  • PDF

Assessment on combined repeated dose and reproduction/developmental toxicity of benzoyl peroxide

  • Sanghwan Song;Kim, Su-Hyon;Heekyung Bae;Lee, Moon-Soon;Park, Kwangsik
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.171-171
    • /
    • 2002
  • This study was carried out by an Korean GLP laboratory to assess the combined repeated dose, reproduction and developmental toxicity of benzoyl peroxide for OECD SIDS(Screening Information Data Set) program. Male and female Sprague Dawley rats were exposed to benzoyl peroxide at levels of 0, 250, 500 and 1,000 mg/kg/day for 29 days for male and for 41-51 days for female.(omitted)

  • PDF

Estimation of Environmental Distribution for Benzoyl peroxide Using EQC Model

  • Kim, Mi-Kyoung;Bae, Heekyung;Kim, Su-Hyon;Song, Sanghwan;Koo, Hyunju;Kim, Hyun-Mi;Lee, Moon-Soon;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.150-151
    • /
    • 2003
  • Benzoyl peroxide is a high production volume chemical, which was produced about 1,375 tons/year in Korea as of 2001 survey. Most of them are used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. The substance is one of the sever chemicals of which human and environmental risks are being assessed by National Institute of Environmental Research under the frame of OECD SIDS Program. It has a melting point of 104-106 $^{\circ}C$ and has solubility of 9.1 mg/1 in water at 25 $^{\circ}C$. The substance was readily biodegradable (83 % after 21days) and had toxic effects to aquatic organisms. The range of 72 hr-EbC50 (biomass) for algae was 0.07-0.44 mg/1 and 48 hr-EC50 for daphnia was 0.07-2.91 mg/1. The LC50 of acute toxicity to fish was 0.24-2.0 mg/1. Although the toxic effects of benzoyl peroxide to aquatic organisms were investigated, environmental monitoring data were not studied. In this study, distribution of the chemical among multimedia environment was estimated using EQC model based on the physical-chemical properties to evaluate the risk of benzoyl peroxide in environment. In level I, II calculation the chemical was distributed to soil (68.3 %) and water (28.7 %). In level III calculation it was primarily distributed to soil (99.9 %) and overall residence time of 3.4 years was estimated. Benzoyl peroxide could be persistent in environment.

  • PDF

Estimation of Multimedia Environmental Distribution for Benzoyl peroxide Using EQC Model (EQC 모델을 이용한 벤조일 퍼록사이드의 다매체 환경거동 예측)

  • Kim, Mi-Kyoung;Bae, Hee-Kyung;Song, Sang-Hwan;Koo, Hyun-Ju;Kim, Hyun-Mi;Choi, Kwang-Soo;Jeon, Sung-Hwan;Lee, Moon-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1090-1098
    • /
    • 2005
  • Benzoyl peroxide is very toxic to aquatic organisms but environmental concentration or exposure effects were not studied. Distribution of the chemical among multimedia environment was estimated using EQC(Equilibrium Criterion) model based on the physical-chemical properties to evaluate the risk of benzoyl peroxide in environment. Level I describes a situation that 100,000 kg of benzoyl peroxide is emitted into the environment which is equilibrium and steady-state without degradation and advection condition. Level II describes a situation that a constant rate of 1,000kg/h of benzoyl peroxide is continuously discharged into the environment which is equilibrium and steady-state with degradation and advection condition. Level III describes a situation that 1,000 kg/h of benzoyl peroxide is continuously introduced in each air, water, soil, and sediment compartment which are non-equilibrium and steady-state with degradation, advection, and inter-media transfer condition. In Level I and II calculations the chemical was distributed to soil(68.3%) and water(28.7%). In Level III calculation it was primarily distributed to soil(99.9%) and overall residence time was estimated to be 3.4 years. Benzoyl peroxide can be persistent in environment.

Actions of Korean Ginseng and Benzoyl Peroxide on Inflammation Relevant to Acne (여드름과 관련된 염증에 대한 고려인삼과 벤조일퍼옥시드의 영향)

  • Kim, Hye-Young;Jin, Sung-Ha;Kim, Shin-Il
    • Journal of Ginseng Research
    • /
    • v.14 no.3
    • /
    • pp.391-398
    • /
    • 1990
  • The intradermal injection of Propionibacterium acnes (ATCC 6919) into the ears of female Sprague-Dawley rats produced a chronic inflammation with the formation of acneiform lesions. Inflammation was characterized by more than four times of ear thickness and 2.8 times of ear weight at day 21. Histologically, massive infiltration of neutrophils, macrophage and lymphocytes, hyperplastic epidermis, comedones containing keratin mass and inflammatory materials were observed. Both ginseng saponin and extract from Korean red ginseng significantly redliced the ear thickness and their effects were similar to that of benzoyl peroxide. Ginseng samples and beneoyl peroxide modified lipid constituents of P. acnesinjected rat ear tissues. Even though no marked histological changes in inflammatory lesions were observed in ginseng-treated ear tissues, Korean red ginseng showed a possibility of reduce in the risk of acne development.

  • PDF

Initial Risk Assessment of Benzoyl Peroxide in OECD High Production Volume Chemical Program

  • Heekyung Bae;Kim, Su-Hyon;Kim, Mi-Kyoung;Sanghwan Song;Hyunju Koo;Lee, Moon-Soon;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.160-161
    • /
    • 2003
  • In Korea, 1, 357 tonnes of benzoyl peroxide was produced as a white granule with purities ranging 22 to 95% in 2001. 75% of benzoyl peroxide is mainly used in the manufacture of expandable styrene polymer and other resins as initiators of polymerization and also been used in the treatment of acne vulgaris and the medical product contains mainly 5 to 10% of it. A very small portion of benzoyl Peroxide is used as flour bleaching agent, Potential human exposure from workplaces is expected to be negligible because this chemical is produced in closed system in only one company in Korea and when a production facility monitors its workplace for the worker exposure annually, the concentration of airborne aerosols at the personal sampling has been less than 1mg/㎥.

  • PDF

Antibacterial Efficacy of Chitosan against Staphylococcus intermedius in Dogs (개의 표재성 농피증에서 분리된 Staphylococcus intermedius에 대한 키토산의 항균효과)

  • Jeong, Hyo-Hoon;Lee, Keun-Woo;Oh, Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.99-103
    • /
    • 2007
  • The antibacterial efficacy of 0.1% (w/v) chitosan solution against Staphylococcus intermedius isolated from a dog with superficial pyoderma was evaluated in vitro and in vivo. The exposure time for the 0.1% chitosan solutions at different pH to be able to eliminate the bacterial cells and the effect of pH of the solutions on antibacterial activity was tested at the same time in vitro. The antibacterial activity of chitosan was compared to other antibacterial agents including 2.5% benzoyl peroxide, 0.5% chlorhexidine acetate, 0.1% chitosan solution combined with 2.5% benzoyl peroxide and chitosan combined with 0.5% chlorhexidine using a modified detergent scrub quantitative technique in 10 adult mongrel dogs in vivo. They were able to eliminate a number of bacteria after the exposure time of 10 minutes at varying degrees according to the pH of the solutions. The antibacterial activity of chitosan was inversely affected by pH with higher activity at lower pH value. The 0.1% chitosan solution was also efficacious against Staphylococcus intermedius in vivo. The combinations of chitosan with benzoyl peroxide and with chlorhexidine were shown to exert higher activity when compared to those of chitosan alone and benzoyl peroxide or chlorhexidine alone. The 0.1% chitosan solution was considered to be efficacious against Staphylococcus intermedius isolated from a dog with superficial pyoderma in both in vivo and in vitro and have a potential for the clinical applications in the treatment or pyoderma in dogs.