• Title/Summary/Keyword: Benzoyl Chloride

Search Result 42, Processing Time 0.022 seconds

Graft Copolymerization of Acrylic Monomer Containing Aromatic Carboxylic Acid Group onto EPDM and Their Mechanical Properties (EPDM에 방향족 카르복시산을 함유하는 아크릴 단량체의 그라프트 공중합과 기계적 특성)

  • Park, Hyun-Ju;Park, Jong-Hyuk;Bae, Jong-Woo;Kim, Gu-Ni;Oh, Sang-Taek
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.216-222
    • /
    • 2012
  • In this study, p-acryloyloxybenzoic acid(ABA) was synthesized with p-hydroxybenzoic acid(HBA) and acryloyl chloride(AC). The synthesized ABA monomer was grafted onto ethylene-propylene-diene rubber(EPDM) in toluene using benzoyl peroxide(BPO) as an initiator. The structures of ABA and EPDM-g-ABA were characterized by FT-IR, $^1H$-NMR, and $^{13}C$-NMR spectrometer. The graft ratio of EPDM-g-ABA increased with increasing the concentration of the initiator and the monomer. Mechanical properties such as tensile strength and compression set of the EPDM-g-ABA were improved with increasing the graft ratio. The $T_g$ and initial decomposition temperature were also increased with increasing the graft ratio.

The Solvolysis of Benzoyl Chloride in Water-Acetone Mixtures Under High Pressure

  • Jee, Jong-Gi;Ree, Taik-Yue
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.1
    • /
    • pp.31-39
    • /
    • 1987
  • By using a complete rate constant($k_e$) which treats a solvent (water) as a reactant, and a conventional rate constant($k_c$), which ignores the solvent in describing the rate, the parameters ${\Delta}V^{\neq}_s,\;{\Delta}H^{\neq}_s\;and\;{\Delta}S^{\neq}_s$ were introduced. These quantities represent the volume change, the enthalpy change, and the entropy change accompanying the electrostriction which occurs when solvent molecules condense on the activated complex. The authors measured the rates of the solvolysis of benzoyl chloride in water-acetone mixtures at $15^{\circ}$ to $30^{\circ}C$ and 1 bar to 2500 bars. Applying the authors' theory to the experimental results, the parameters, ${\Delta}V^{\neq}_s,\;{\Delta}H^{\neq}_s\;and\;{\Delta}S^{\neq}_s$ were evaluated, and it was found that they are all negative, indicating that water dipoles condense on the activated complex. They also proposed the following equations: ${\Delta}H^{\neq}_c\;=\;{\Delta}H^{\neq}_e\;+\;{\Delta}H^{\neq}_s\;and\; {\Delta}S^{\neq}_c\;=\;{\Delta}S^{\neq}_e\;+{\Delta}S^{\neq}_s\;,\;where\;{\Delta}H^{\neq}_c\;and\;{\Delta}H^{\neq}_c\;and\;{\Delta}S^{\neq}_s $are the activation enthalpy change and the activation entropy change for the conventional reaction rate, respectively, and ${\Delta}H^{\neq}_e$ and ${\Delta}S^{\neq}_e$ are the corresponding quantities for the complete reaction rate. The authors proposed that for the $SN_1$ type, all the quantities, ${\Delta}V^{\neq}_s,\;{\Delta}S^{\neq}_s\;,{\Delta}H^{\neq}_s\;and\;{\Delta}S^{\neq}_s$ are comparatively large, and for the $SN_2$ type, these quantities are smaller than for the $SN_1$ type, and occasionally the case ${\Delta}S^{\neq}_e$ < 0 occurs. Using these criteria, the authors concluded that at high temperature, high pressure and for a high water content solvent, the SN_1$ type mechanism predominates whereas in the reversed case the $SN_2$M type predominates.

Comparative analysis of glycerin in cosmetics by LC/MS and 1H NMR (LC/MS와 1H NMR을 이용한 화장품속의 글리세린 비교분석)

  • Park, Gyo-Beom;Park, Chan Jo;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.400-405
    • /
    • 2007
  • The comparative analysis of glycerin in cosmetic samples was carried out by LC/MS and $^1H$ NMR spectrometry. For the LC/MS analysis, aqueous solution was controlled in strong basic condition with sodium hydroxide, and benzoyl chloride was added to the solution for the derivatization of glycerin. The derivative was extracted using pentane and analyzed by the LC/MS. For the $^1H$ NMR analysis, sample was directly dissolved in $D_2O$ solvent without pretreatment. The quantitative analysis of glycerin was done by $^1H$ NMR ERETIC method. The analysis results of LC/MS and $^1H$ NMR showed that the calibration curves were a good linearity with $r^2=0.9991$ in the range of 0.1 to $10{\mu}g/mL$ and $r^2=1$ in the range of 25 to $500{\mu}g/mL$, respectively.

Correlation of the Rates of Solvolysis of Electron-Rich Benzoyl Chloride Using the Extended Grunwald-Wistein Equation

  • Oh, Hyunjung;Choi, Hojune;Park, Jong Keun;Yang, Kiyull;Koo, In Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2697-2701
    • /
    • 2013
  • The solvolysis rate constants of piperonyloyl chloride (1) in 27 different solvents are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale, $Y_{Cl}$ solvent ionizing scale, and I aromatic ring parameter with sensitivity values of $0.30{\pm}0.05$, $0.71{\pm}0.02$, and $0.60{\pm}0.04$ for l, m, and h, respectively. The solvent kinetic isotope effect values (SKIE, $k_{MeOH}/k_{MeOD}$ and $k_{50%MeOD-50%D2O}$) of 1.16 and 1.12 were also in accord with the values for the $S_N1$ mechanism and/or the dissociative $S_N2$ mechanism. The product selectivity values (S) for solvolysis of 1 in alcohol/water mixtures were in the range of 0.5 to 1.9, which is also consistent with the proposed unimolecular ionization mechanism.

Nucleophilic Substitution at a Carbonyl Carbon Atom (VII). Kinetic Studies on the Sovolysis of 2-Thenoyl Chloride in Binary Mixtures of Acetone-Water and Ethanol-Water (카르보닐 탄소원자의 친핵성 치환반응 (제7보). 물-에탄올 및 물-아세톤 혼합용매속에서 2-염화테노일의 가용매 분해반응)

  • Sohn, Jin Eon;Yoon, Sang Kee;Lee, Ik Choon
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.333-339
    • /
    • 1976
  • The rates of solvolysis for 2-thenoyl chloride have been measured in aqueous acetone and aqueous ethanol at various temperatures ranging from 20 to $40^{circ}C$. The activation parameters and the Grundwald-Winstein's slope are determined by the analysis of solvolysis rates. The results indicated that the reaction rates of solvolysis are considerably slower than those of the reaction for benzoyl chloride due to the electron donating effect of thiophene nucleus. The results also showed that the reaction proceeds with the $S_N1$ mechanism in water-rich solvents whereas the $S_N2$ character increases with the decrease of water content, and overall reaction is subject to entropy control.

  • PDF

Synthesis and Characterization of Very High Molecular Weight Nylon 4 and Nylon 4/6 Copolymers (매우 높은 분자량을 갖는 Nylon 4 및 Nylon 4/6 공중합체의 합성 및 그 특성 분석)

  • Kim, Nam Cheol;Kim, Ji-Heung;Nam, Sung Woo;Jeon, Boong Soo;Yoo, Young-Tai;Kim, Young Jun
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.211-217
    • /
    • 2013
  • Potassium tert-butoxide (t-BuOK) with $CO_2$ or benzoyl chloride (BzC) as a polymerization initiator system was used with crown ether or TMAC as catalyst to synthesize very high molecular weight nylon 4 homo- and copolymers by anionic ring opening polymerization. Effect of different amounts of catalyst, crown ether and TMAC on the polymerization was studied in terms of intrinsic viscosity, yield and thermal properties. By adding crown ether or TMAC, polymers with very higher intrinsic viscosity values were obtained in a high yield. It was possible to synthesize nylon 4 homopolymer with such a high intrinsic viscosity value of 6.36 dL/g. Crown ether was found to be more efficient in terms of intrinsic viscosity and polymer yields than TMAC. Thermal analysis confirmed that molecular weight effect on the thermal properties of both nylon 4 and nylon 4 copolymer was marginal.

Nucleophilic Substitution at a Carbonyl Carbon Atom (IX). Solvolysis of 2-Furoyl Chloride and 2-Thenoyl Chloride in Binary Mixtures (카르보닐탄소원자의 친핵성 치환반응 (제9보). 이성분 혼합용매에서 2-염화테노일 및 2-염화퓨로일의 가용매분해반응)

  • Son Jin-Eon;Sang-Kee Yoon;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.339-348
    • /
    • 1979
  • The kinetics of the solvolysis of 2-furoyl chloride and 2-thenoyl chloride in $MeOH-H_2O,\;EtOH-H_2O,\;(Me)_2CO-H_2O,\;MeCN-H_2O$ and MeCN-MeOH has been investigated. The rates were faster in protic solvents than in aprotic solvents. This was caused by the bond breaking of leaving group through hydrogen-bonding solvation of protic solvents. In MeCN-M$\'{e}$OH the rate in MeOH rich solvents was faster than in MeCN rich solvents by the specific solvation of alcoholic hydrogen and there was a maximum rate of reaction at MeOH mole fraction of 0.8. The reaction rates of solvolysis were considerably slower than those of benzoyl chloride owing to the electron withdrawing effect of thienyl and furyl groups. It was concluded that solvolytic reaction proceeds via a dissociative $S_N2$ mechanism in which bond-breaking precedes bond-formation at the transition state.

  • PDF

The Preparation and Electrochemical Properties of Homogeneous Anion-exchange Composite Membranes Containing Acrylonitrile-butadiene Rubber (Acrylonitrile-butadiene rubber를 포함한 균질계 음이온교환 복합막의 제조 및 전기화학적 특성)

  • Song, Pu Reum;Mun, Hye Jin;Hong, Sung Kwon;Kim, Jeoung Hoon;Chang, Bong Jun
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.463-471
    • /
    • 2014
  • While poly(styrene)-based anion exchange membranes have the advantage like easy and simple manufacturing process, they also possess the disadvantage of poor durability due to their brittleness. Acrylonitrile-butadiene rubber was used here as an additive to make the membranes have improved flexibility and durability. For the preparation of the anion exchange membranes, a PP mesh substrate was immersed into monomer solutions with vinylbenzyl chloride, styrene, divinylbenzene and benzoyl peroxide, then thermally polymerized & crosslinked. The prepared membranes were subsequently post-aminated using trimethylamine to result in $-N+(CH_3)_3$ group-containing composite membranes. Various contents of vinylbenzyl chloride and acrylonitrile-butadiene rubber were investigated to optimize the membrane properties and the prepared membranes were evaluated in terms of water content, ion exchange capacity and electric resistance. It was found that the optimized composite membranes showed higher IEC and lower electric resistance than a commercial anion exchange membrane(AMX) and have excellent flexibility and durability.

Effect of Lithium Chloride on the Borane Reduction of Organic Compound (보란-염화리튬에 의한 유기화합물의 환원반응)

  • Nung Min Yun;Jin Soon Cha
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 1978
  • The effect of lithium chloride on the borane reduction of organic compounds was studied for three ketones, seven acid derivatives, three epoxides and cyclohexene in tetrahydrofuran at $0^{\circ}$. When compared with borane itself, borane-lithium chloride system enhanced the rates of reductions markedly of 2-heptanone, acetophenone, benzoyl chloride, phthalic anhydride, and three epoxides, whereas the reductions of benzophenone, four esters and cyclohexene showed little or no effect. $BH_3$-LiCl (1 : 0.1) reduced styrene oxide in 2 hr at $0^{\circ}$ to give 94.2 % yield of alcohols, 1-to 2-phenylethanol ratio being 60.8 to 39.2. And in the reduction of cyclohexene oxide, $BH_3$-LiCl (1 : 0.1) gave a quantitative yield of cyclohexanol in 2 hr at $0{\circ}$, however $BH_3$-LiCl (1 : 1) gave 58 % cyclohexanol and 42 % 2-chlorocyclohexanol. In the reduction of cyclohexene oxide, lithium nitrate showed no rate enhancement even when the salt was added in large excess. A formation of lithium chloroborohydride in the$BH_3$-LiCl system is suggested.

  • PDF

Synthesis and In-vitro Activity of Some New Class of Thiazolidinone and Their Arylidene Derivatives

  • Seelam, Nareshvarma;Shrivastava, S.P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3996-4000
    • /
    • 2011
  • In an attempt to find a new class of anti microbial agents, a series of thiazolidinone and their 5-arylidene derivatives containing 4-(4-methyl benzamido)-benzoyl moiety were synthesized via the reaction of benzocaine with appropriate chemical reagents. These compounds were screened for their antibacterial activity against Gram-positive bacteria (Bacillus subtilis and Bacillus thuringiensis), Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and antifungal activity against Botrytis fabae, Fusarium oxysporan and Candida albicans. On the other hand the synthesized compounds were also screened for their anti tubercular activity. IR, $^1H$ NMR, $^{13}C$ NMR and MS spectral analyses established the structures of the newly synthesized compounds. The results revealed that some of these compounds have shown promising antimicrobial and anti tubercular activity in comparison with standard drugs.