• Title/Summary/Keyword: Benzoquinone

Search Result 110, Processing Time 0.024 seconds

Effects of Electrolytes in a Liquid Thin Layer System

  • Chung, Taek-Dong
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.216-220
    • /
    • 2002
  • The effects of electrolytes on electrochemical behavior from an oil thin layer interposed between a graphite electrode and an aqueous solution phase were examined. A hydrophobic electroactive species, tetrachloro-1,4-benzoquinone (TCQ), in a benzonitrile (EN) layer was employed to study ion transfer properties across the BN-water interface. Experimental results showed that hydrophobic cations as well as anions could be successfully used as ionic charge carriers. The addition of various salts into either the oil layers or the aqueous solutions offers deeper insight for the electrochemistry of the liquid thin layer system. When aqueous perchloric acid is interfaced with the BN films, the perchlorate ion of tetrahexylammonium perchlorate (THAP) substantially suppresses the dissociated proton concentration in the layer by the common ion effect while there is only a little change in the total acid concentration. Further approach by theoretical calculation makes it possible to quantitatively understand the effect of the electrolytes to the electrochemical responses of TCQ, which were previously reported (Anal. Chem. 73, 337 (2001)).

Synthesis of a New Diels-Alder Quinone Adduct and Its Use in Preparing Thiazolo- and Oxazoloquinolines

  • Hammam, A.S.;Youssef, M.S.K.;Radwan, Sh.M.;Abdel-Rahman, M.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.779-785
    • /
    • 2004
  • Syn (or anti) cinnamaldehydeoxime (1a, b) undergoes Diels-Alder addition to tetrabromo-p-benzoquinone (2)in dry xylene in 1 : 1 and 2 : 1 molar ratios to give the mono- and diadducts 3 and 4a, b respectively. The reaction of 3 with thioamides in ethanol gave thiazoloquinoline diones 6a-d, whereas with acid amides in ethylene glycol, it gave oxazoloquinolinediones 12a-f.

Terpolymerization of Carbon Monoxide, Styrene, and 4-Methylstyrene Catalyzed by Palladium-Rare Earth Catalyst

  • Tian, Jing;Guo, Jin-Tang;Li, Peng;Zhang, Xin;Chen, Zhi-Kun;Zhao, Hai-Yang
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.563-567
    • /
    • 2009
  • In order to improve the thermomechanical performance of polyketone, a third monomer (4-methylstyrene) was added to the copolymerization system. The terpolymer of CO, styrene, and 4-methylstyrene was synthesized in the presence of multi component catalysts containing palladium acetate and rare earth metal phosphonates. The products were characterized by infrared spectroscopy (IR), and nuclear magnetic resonance spectroscopy (NMR). The effects of the different components, including the third monomer, palladium acetate, 2,2'-bipyridyl, rare earth phosphonate, p-toluene-sulphonic acid, and p-benzoquinone, were also studied. The highest catalytic activity of 965.51 g/(gPd h) was obtained with a catalyst containing palladium acetate and rare earth phosphonate.

Biotransformation of Arylnitroso Compound by Mammalian 1,4-Benzoquinone Reductase (포유동물 1,4-벤조퀴논 환원효소에 의한 아릴니트로소 화합물의 생변환)

  • 김경순;신해용
    • Journal of Life Science
    • /
    • v.12 no.3
    • /
    • pp.281-287
    • /
    • 2002
  • Quinone reductase was purified to homogeneity from bovine liver and the purified enzyme catalyzed the reduction of phenanthrenequinone as well as benzo- and naphthoquinones. The enzyme catalyzed the biotransformation of arylnitroso nitroso compound and the reaction product was identified by TLC, GC, CC-MS and NMR. The reaction was almost entirely inhibitable by Cibacron blue 3GA or dicumarol, potent inhibitors of mammalian quinone reductase.

Dioxygen Transfer from 4a-Hydroperoxyflavin Anion to Isomeric Aminophenolates

  • Sam-Rok Keum;Ki-Bong Lee;Thomas C. Bruice
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.95-99
    • /
    • 1990
  • The dioxygen transfer reaction from $N^5$-ethyl-4a-hydroperoxy-3-methyllumiflavin anion (4a-FlEtOO-) has been extended to isomeric aminophenol systems (1a-4a). O-aminophenol (o-AP, 1a & 2a) and p-aminophenol(p-AP, 3a & 4a) were turned out to be good substrates, whereas m-aminophenol(m-AP, 5a) was not. This is due to the charge location which is not on the carbon bearing the amino group. o-AO's react with 4a-FlEtOO- to give isophenoxazine derivatives (6 & 7) and with p-AP's to produce p-benzoquinone derivatives (8 & 9). The partition coefficients $(k_2/k_3)$ of 1a & 2a were $4.84{\times}10^{-4}\;&\;1.66{\times}10^{-5}M$, respectively and those of methylated aminophenolates, 2a & 4a were 4-10 times greater than nonmethylated substrates, 1a & 3a.

Selective Reduction by Lithium Bis- or Tris(dialkylamino)aluminum Hydrides. Ⅶ. Reaction of Lithium Tris(dihexylamino)aluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups$^1$

  • Cha, Jin-Soon;Kwon, Oh-Oun;Lee, Jae-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.743-749
    • /
    • 1993
  • The approximate rates and stoichiometry of the reaction of excess lithium tris(dihexylamino)aluminum hydride(LTDHA) with selected organic compounds containing representative functional groups under the standardized conditions (tetrahydrofuran, 0$^{\circ}$C) were studied in order to define the reducing characteristics of the reagent for selective reductions. The reducing ability of LTDHA was also compared with those of the parent lithium aluminum hydride(LAH), lithium tris(diethylamino)aluminum hydride(LTDEA), and lithium tris(dibutylamino)aluminum hydride(LTDBA). In general, the reactivity toward organic functionalities is in order of $LAH{\gg}LTDEA{\geq}LTDBA>LTDHA$. LTDHA shows a unique reducing characteristics. Thus, the reagent reduces aldehydes, ketones, esters, epoxides, and tertiary amides readily. Anthraquinone is cleanly reduced to 9,10-dihydro-9,10-anthracenediol without hydrogen evolution, whereas p-benzoquinone in inert to LTDHA. In addition to that, disulfides are also readily reduced to thiols without hydrogen evolution. However, carboxylic acids, anhydrides, nitriles, and primary amides are reduced slowly. Especially, this reagent reduces aromatic nitriles to the corresponding aldehydes in good yields.

Pd(II) Catalyzed Copolymerization of Styrene and CO in Quaternary Ammonium Ionic Liquids

  • Tian, Jing;Guo, Jin-Tang;Zhu, Cheng-Cai;Zhang, Xin;Xu, Yong-Shen
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.144-148
    • /
    • 2009
  • Poly(1-oxo-2-phenyltrimethylene) was synthesized by palladium-catalyzed copolymerization of styrene and carbon monoxide in quaternary ammonium ionic liquids. The $[Pd(bipy)_2][PF_6]_2$ compound had relatively more catalytic activity than $[Pd(bipy)_2][BF_4]_2$ in ionic liquids. The catalytic activity of palladium (II) composite catalyst was superior to the catalyst formed in situ from palladium acetate, 2,2-bipyridyl, and $X^-$ ($X^-=PF_6^-$, $BF_4^-$) in ionic liquids. The effects of the volume of ionic liquids, reaction time and benzoquinone content on the copolymerization were also described.

Inhibitory Effect on Melanin Formation, Collagenase and Elastase Activity by synthesized Coenzyme $Q_{10}$ Derivatives (세포내 멜라닌 생성 및 Collagenase와 Elastase에 대한 Coenzyme $Q_{10}$ 유도체들의 억제활성)

  • Choi, Won-Sik;Jang, Do-Yoen;Nam, Seok-Woo;Eo, Jin-Yong;Lee, Kyoung-Ju
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.164-170
    • /
    • 2008
  • Coenzyme $Q_{10}$ and six derivatives of coenzyme Qn were synthesized and tested for their inhibitory effects on melanogenesis occurred in murine melanoma (B16/F1) cells and on collagenase/elastase activities as well. As the result, synthetic coenzyme Qn showed a potent inhibitory effect on melanin formation, collagenase and elastase activities in all tested concentrations. Among these synthetic compounds, coenzyme $Q_1$ and coenzyme $Q_2$ potentially inhibited melanin formation and elastase activity when compared to other coenzyme Qn derivatives. For the collagenase activities, all coenzyme Qn derivatives inhibited 80-85% of controls. As compared, coenzyme Qn derivatives exhibited strong inhibitory activities with the decrease of isoprenoid unit number of coenzyme Qn derivatives except for collagenase activity. For the inhibition of collagenase activity, moiety of benzoquinone might be considered as the active functional group. Taken together, coenzyme $Q_1$ and coenzyme $Q_2$ might be used for functional cosmetics.

Searching of Possible Target Enzymes for Herbicide Development using Commercial Plant-Specific Inhibitors (식물 특정효소저해제의 생물활성 조사에 의한 신규제초제 작용점 탐색)

  • Hwan, In-Taek;Choi, Jung-Sup;Park, Sang-Hee;Lee, Kwan-Hwi;Lee, Byung-Hoi;Hong, Kyung-Sik;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.1
    • /
    • pp.36-45
    • /
    • 2001
  • This study was conducted to search new target enzymes of novel herbicide candidate. Total of 107 biochemical inhibitors reported to inhibit over than 100 different plant enzymes were purchased from commercial chemical companies. 15 inhibitors and 34 enzymes were selected by germination assay, seedling assay, wheat leaf disc assay, and whole plant assay. Among them, seven compounds of purine, phehyl-hydrazine, o-phenanthroline, oleylamine, dicyclohexylcarbodiimide, 7,8-benzoquinoline, and aminooxyacetic acid showed high herbicidal activity in the whole plant assay under greenhouse while 7,8-benzoquinone, 8-hydroxyquinoline, 2,2'-dipyridyl, and o-phenanthroline inhibited seed germination of barnyardgrass, rice, and tomato at concentrations of 1.25 to $5{\mu}M$. The compounds of 7,8-benzoquinoline, chlorpromazine, cyanuric fluoride, 4-methylpyrazole, oleylamine, tranylcypromine, and trifluoperazine inhibited the growth of cyanobacteria at 30 to $100{\mu}M$. The compounds of dicyclohexylcarbodiimide and chlorpromazine exhibited whitening effect on tile wheat leaf disc at $100{\mu}M$. These results suggest that the plant-specific enzyme inhibitors which have biological activities may supply the target enzyme for developing new herbicide candidate.

  • PDF

Preparation of Silver Nanoparticles Using AgNO3 Precursor as Carrier for Olefin/Paraffin Separation and the Effect Analysis of NO3- (올레핀/파라핀 분리용 운반체로서 AgNO3 전구체를 활용한 은 나노입자 제조 및 NO3-의 효과 분석)

  • kim, Minsu;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.265-270
    • /
    • 2018
  • In previous studies, a poly(ethylene oxide)(PEO)/Ag nanoparicles (AgNPs)(precursor $AgBF_4$)/p-benzoquinone (p-BQ) composite membrane was prepared for olefin/paraffin separation and the performance of this composite membrane was maintained at a selectivity of 10 and a permeability of 15 GPU. However, since the price of $AgBF_4$ precursor is high, this study used $AgNO_3$ as a precursor of Ag nanoparticles which is competitive in terms of price. As a result, it was observed that the separation performance was not obtained because the existing $NO_3{^-}$ could surround AgNPs. In this study, we fabricated PEO, poly(vinyl alcohol)(PVA), and polyether block amide-1657 (PEBAX-1657) polymer composite membrane using electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) for separation performance even when $AgNO_3$ was used as a precursor of Ag nanoparticles. As a result, it was analyzed that the performance was not observed regardless of the influence of the polymer and the electron acceptor, indicating that the anion of the precursor plays a crucial role in the separation performance.