• Title/Summary/Keyword: Benzo(k)fluoroanthene

Search Result 3, Processing Time 0.016 seconds

Polycyclic Aromatic Hydrocarbons (PAHs) in Korean Soil: Distribution by Depth and Land Use (토양깊이 및 토지이용에 따른 다핵방향족탄화수소 (PAHs)의 토양 중 분포)

  • Nam, Jae-Jak;Hong, Suk-Young;Lee, Jong-Sik;So, Kyu-Ho;Lee, Sang-Hak
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.2 s.57
    • /
    • pp.129-135
    • /
    • 2007
  • Polycyclic aromatic hydrocarbons(PAHs) have been analyzed to assess vertical distribution of them with different land uses. The soils were collected from three layers; surface $(0{\sim}5cm)$, intermediate $(6{\sim}10cm)$, and deep $(11{\sim}15cm)$ layer, respectively considering land use; paddy, upland, and mountain in each site. Total 89 samples of soil from 10 sites were analyzed. Overall mean of ${\sum}PAHs$ were 137 (range $8.87{\sim}625{\mu}g\;kg^{-1}$), 203 (range $16.5{\sim}645{\mu}g\;kg^{-1}$), and $83.4{\mu}g\;kg^{-1}$ (range $6.65{\sim}667{\mu}g\;kg^{-1}$) for paddy, upland, and mountain soil, respectively. The dominant PAHs were fluoroanthene/benzo(b)fluoroanthene>pyrene>indeno(1, 2, 3-cd) pyrene in paddy, fluoroanthene/pyrene>benzo(b)fluoroanthene>chrysene in upland, and benzo(b)fluoroanthene>pyrene>chrysene in mountain soil, whereas the profile was quite similar for each other except that indeno(1, 2, 3-cd)pyrene and benzo(ghi)perylene are relatively higher in the paddy soils. Although the concentration gradient by depth was not observed in the paddy and upland soils because perturbation of soil layer by tillage, significant decrease was in the deep layer relative to the surface and intermediate layer. However, the concentration gradient of PAHs by soil depth was clearly shown in mountain soil without experiencing disturbance of tillage.

Effect of Benzo(k)fluoroanthene and Genistein on CYP1A1 Gene Expression in Human Breast Cancer MCF-7 Cells. (사람 유방암 세포 MCF-7에서 Benzo(k)fluoroanthene과 genistein이 CYP1A1 유전자 발현에 미치는 영향)

  • Yang, So-Yeon;Min, Kyung-Nan;Shin, Yhun-Yhong
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.3
    • /
    • pp.128-136
    • /
    • 2004
  • CYP1A1 is known to be inducible by xenobiotic compouds such as polyciclic aromatic hydrocarbons(PAHs) and 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). These chemicals have been identified worldwide and can have a significant impact on the human health and well being of human and wildlife. Given these issues, the detection and quantification of these chemicals in biological, environmental and food samples is important. First, we investigated the effect of on CYP1A1 promoter activity, 7-ethoxyresorufin-O-deethylase(EROD) activity and CYP1A1 mRNA expression induced by benzo(k)fluoranthene(B(k)F) in MCF-7 cells. We found that B(k)F significantly up-regulates the level of CYP1A1 prompter activity, EROD and CYP1A1 mRNA. When cells were treated with genistein, it was not changed that EROD and CYP1A1 mRNA, compared to that of control. However, genistein inhibited the B(k)F-induced CYP1A1 promoter activity and mRNA level at high concentration. Furthermore, in this study, effects of HDAC(histone deacetvlase) inhibitors on human prostate cancer cells proliferation were examined. HC-toxin, SAHA and TSA inhibited cell proliferation in PC3 cells. A novel HDAC inhibitor, IN2001 also suppressed the growth of PC3 cells. And IN2001 and SAHA increased S phase and G2/M phase at 12 hrs treatment but cells were arrested G0/G1 phase at 45 hrs treatment. The HC-toxin treatment for 24 hrs and 48 hrs increased G0/G1 at low concentration ($0.1\mu\textrm{m}$) but increased G2/M at more than concentration of $1\mu\textrm{m}$. TSA increased G2/M phase. These findings height the possbility of developing HDAC inhibitors as potential anticancer therapeutic agents for the treatment of prostate cancer.

  • PDF

Long-term Changes in Polycyclic Aromatic Hydrocarbon Content of Paddy Soils in Youngnam area (영남지역 논토양에서 다핵방향족탄화수소 농도의 장기변동)

  • Nam, Jae-Jak;Hong, Suk-Young;Lee, Hee-Dong;Park, Chang-Young;Lee, Sang-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.3
    • /
    • pp.196-200
    • /
    • 2007
  • This study was to determine long-term changes of polycyclic aromatic hydrocarbons (PAHs) in paddy soils. To do this, we analyzed 16 PAHs in soil samples which were stored in the archive of Yeoungnam Agricultural Research Institute, Milyang, Kyeoungnam province, Korea. The samples used in this study were collected every year from 1978 to 2001 at the plough layer (0-12cm). In average, total PAHs accumulated in paddy soil was continuously decreased since 1980 when it peaked to be $237g\;kg^{-1}$. No significant changes were observed for PAHs having 5-6 phenyl rings for the past two decades, whereas PAHs with 3-4 phenyl rings were greatly decreased, reaching at about a half levels of the 1980's. It is worthy to be noted that the large reduction in PAHs with 3-4 phenyl rings has mainly been attributed to the decrease of PAHs in paddy soils for last 20 years. The major compounds accumulated were: phenanthrene > fluoroanthene > chrysene/benzo(b)fluoroanthene. The present results suggest that the switch of main fuels used in Korea from coal to petroleum around at the end of 1970's is likely contributed to decrease in PAH accumulation in paddy soils.