• Title/Summary/Keyword: Benzene

Search Result 1,928, Processing Time 0.027 seconds

Effect of Oxyfluorination of Activated Carbon Fibers on Adsorption of Benzene Gas Causing Sick House Syndrome (새집증후군 유발 벤젠가스 흡착에 미치는 활성탄소섬유의 함산소불소화 영향)

  • Lim, Hyung Soon;Kim, Min-Ji;Kong, Eun Young;Jeong, Jin-do;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.312-317
    • /
    • 2018
  • In this study, activated carbon fibers (ACFs) were treated by oxy-fluorination to improve the adsorption property of benzene gas, one of the gases causing sick house syndrome. Surface properties and pore characteristics of oxyfluorinated activated carbon fibers were confirmed by X-ray photoelectron Spectroscopy (XPS) and Brunauer-Emmett-Teller (BET), and adsorption properties of benzene gas were evaluated by gas chromatography (GC). As a result of XPS data, it was confirmed that the fluorine functional groups on activated carbon fibers surface increased with increasing the fluorine partial pressure. The specific surface area of all samples decreased after the oxyfluorination treatment, but the micropore volume ratio increased when the fluorine partial pressure was at 0.1 bar. The oxyfluorinated activated carbon fibers adsorbed 100 ppm benzene gas for an 11 h, it was found that the adsorption efficiency of benzene gas was improved about twice as much as that of untreated ones.

DNA damage in T- and B-lymphocytes of rats exposed to benzene

  • Sul, Dong-Geun;Lee, Do-Young;Jo, Gyu-Chan;Im, Ho-Sub;Hong, Hyun-Ho;Jo, Duk-Jin;Kim, Chan-Wha;Kim, Hae-Joon;Lee, Eun-Il
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.248-254
    • /
    • 2002
  • Single cell gel electrophoresis assay was carried out to evaluate DNA damage in T-and B-lymphocytes from rats exposed to benzene and the correlation between DNA damage and the level of t,t-muconic acids, which are urinary benzene metabolites, was investigated. In control rats, the mean values of Olive tail moments in T-and B-lymphocytes were 1.507$\pm$0.187 and 1.579$\pm$0.206 respectively. DNA damages of T-lymphocytes in rats exposed for 4 weeks showed the highest Olive tail moments at each benzene concentration examined (2.72-4.351). However this DNA damage was decreased after 6 weeks of exposure (1.74-2.09). DNA damages of B-lymphocytes did not show such differences with exposure time or benzene concentration (1.49-2.07) except at 200 ppm at 4 weeks. T-lymphocytes show significantly more damages than B-lymphocyte upon acute exposure to benzene.

  • PDF

Comparison of Sampling Methods for Determining Airborne Mixture of Organic Solvents (공기중 유기용제 혼합물 측정방법의 비교연구)

  • Chun, Mee Hye;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.1
    • /
    • pp.16-28
    • /
    • 1991
  • A study on comparison of standard charcoal tube method, infrared gas analyzer, and detector tube method were conducted. Measurements were performed simultaneously at same sampling points in an air chamber containing benzene, toluene and xylene vapors. Charcoal tube samles were collected at sampling flowrates of 0.05, 0.2, 0.5, and 1.0 1pm. Results are as follows : 1. Coefficients of variation of results with charcoal tube method for bezene, toluene and xylene mixture vapor were 14.34 % in benzene(0.28-11.12 ppm), 9.20 % in toluene (2.68-135.09 ppm) and 10.21 % in xylene (2.56-82.64 ppm), respectively. 2. Results of infrared gas analyzer in mixture air were non-specific on benzene and toluene. Ratio of results of infrared gas analyzer to those of charcoal tube on benzene, toluene and xylene were 696.4 %, 30.3 % and 36.6 %, respectively. 3. Ratio of responses of detector tubes to those of charcoal tube were 49.4 % in benzene, 22.1 % in toluene and 223.9 % in xylene. Xylene detector tube were interfered by toluene greately. 4. Collection efficiencies of charcoal tubes at low concentraton(benzene : 1 ppm, toluene : 10 ppm, xylene : 10 ppm) were stable on various flowrate from 0.05 to 1.0 1pm, but at high concentrations the efficiency decreased at high flowrate above 0.5 1pm. 5. Within the saturation capacity of charcoal, collection effiency decreased at 0.5-1.0 1pm. Smpling feowrates of 0.05-0.20 1pm were appropriate for sampling organic vapors.

  • PDF

Study on the Short Term Exposure Level (STEL) of the Benzene for the Tank Lorry Truck Drivers during Loading Process

  • Park Doo Yong
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2004
  • Some of the petroleum products contain benzene which is well known as a confirmed human carcinogen. For example, gasoline products contain benzene ranging up to several percents by weight. High exposures to the benzene and other organic solvents would be likely to occur during intermittent tasks and or processes rather than continuous jobs such as sampling, repair, inspection, and loading/unloading jobs. The work time for these jobs is various. However, most of work time is very short and the representative time interval is 15 minutes. Thus, it is preferable to do exposure assessment for 15 minute time weighted average which is known as a short time exposure level(STEL) by ACGIH rather than for 8-hours TWA. It is particularly significant to the exposure monitoring for benzene since it has been known that the exposure rate plays an important role to provoke the leukemia. Due to the large variations, a number of processes/tasks, the traditional sampling technique for organic solvents with the use of the charcoal and sampling pumps is not appropriate. Limited number of samples can be obtained due to the shortage of sampling pumps. Passive samplers can eliminate these limitations. However, low sampling rates resulted in collection of small amount of the target analysts in the passive samplers. This is originated the nature of passive samplers. Field applications were made with use of passive samplers to compare with the charcoal tube methods for 15 minutes. Gasoline loading processes to the tank lorry trucks at the loading stations in the petroleum products storage area. Good agreements between the results of passive samplers and those of the charcoal tubes were achieved. However, it was found that special cautions were necessary during the analysis at very low concentration levels.

Occupational Exposure Aspects of Gasoline Vapor According to the Use of a Gasoline Vapor Recovery System (주유소 유증기 회수설비 사용에 따른 가솔린 증기의 개인노출양상)

  • Lee, Heemyung;Won, Jong-Uk;Kim, Chi-Nyon;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.2
    • /
    • pp.156-165
    • /
    • 2015
  • Objectives: The purpose of this study was to investigate the possible effects of a gasoline vapor recovery system on personal exposure levels of gasoline vapor constituents including benzene, toluene, ethyl benzene, xylene(BTEX), and methyl tert-butyl ether(MTBE) among gas station workers in a metropolitan area. Methods: Thirty-one gas station workers at ten gas stations in a metropolitan area were selected as subjects for this study. Test method PV2028 as recommended in the OSHA process was used for sampling and analysis. Results: The personal exposure levels of benzene, toluene, ethyl benzene, xylene, MTBE and gasoline vapor in the gas station workers were $0.0018{\pm}0.0069ppm$, $0.0077{\pm}0.0137ppm$, $0.0002{\pm}0.0008ppm$, $0.0016{\pm}0.0084ppm$, $0.2619{\pm}0.3340ppm$, and $1.4940{\pm}1.7984ppm$, respectively. After adjustment for refueling frequency and volume, personal exposure levelswere higher in the gas stations where gasoline vapor recovery systems(Stage II) were not installed, but the results were not statistically significant. Gasoline vapor concentrations showed a positive correlation to the level of MTBE, a gasoline additive. Conclusions: Vapor recovery systems(Stage II) were effective not only in reducing emissions of air pollutants, but also in reducing exposure to hazardous substances among gas station workers. In addition, acorrelation between gasoline vapors and MTBE concentration was confirmed.

Decomposition of Gas-Phase Benzene on TiO2 Coated Alumina Balls by Photocatalytic Reaction (이산화티탄이 코팅된 알루미나 볼에서 광촉매 반응에 의한 기상벤젠의 분해)

  • Lee Nam-Hee;Jung Sang-Chul;Sun Il-Sik;Cho Duk-Ho;Shin Seung-han;Kim Sun-Jae
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.407-412
    • /
    • 2004
  • Photo decomposition of gas phase benzene by $TiO_2$ thin films chemically deposited on alumina balls were investigated under UV irradiation. Photo decomposition rates were measured in real time during the reaction using a photo ionization detector, which ionizes C-H bonding of benzene molecules and then converts into volatile organic compounds (VOCs) concentrations. From the measuring results, the VOCs concentration increased instantly when IN irradiated because C-H bonds of benzene molecules strongly absorbed on the surface of $TiO_2$ films before the IN irradiation was destroyed by photo decomposition. After that, the VOCs concentration decreased with increasing surface area of $TiO_2$ and reaction time under the IN irradiation. At the optimal conditions for the photo decomposition of gas phase benzene, the reaction rate of the photo decomposition for high concentrations (over 60 ppm) was slow but that of relatively low concentration (under 60 ppm) was fast, due to limited surface area of $TiO_2$ thin films for the reaction. Thus, it is concluded that the photo decomposition rate was mainly affected by the surface area of $TiO_2$ or absorption reaction.

Ambient Air Concentrations of Benzene, Toluene, Ethylbenzene and Xylene in Bangkok, Thailand during April-August in 2007

  • Laowagul, Wanna;Garivait, Hathairatana;Limpaseni, Wongpun;Yoshizumi, Kunio
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.14-25
    • /
    • 2008
  • Benzene, toluene, ethyl benzene and m-, p-, and o-xylene, the most influential aromatic volatile organic compounds (VOCs), were measured in Bangkok, Thailand, one of the most rapidly developing urban areas in Southern East Asia. The purpose of this study is to characterize the ambient air quality with respect to above mentioned aromatic compounds. The data were monitored in ten sites which cover roadside area, residential area and background area. Canister technique was used to obtain air sample at 24 hour interval per a month during April-August in 2007. GC/MS with three stage preconcentrator was used to analyze these samples. The average concentrations of benzene, toluene, ethyl benzene m-, p-xylene and o-xylene are 5.8, 36.1, 4.1, 11.0 and $3.7{\mu}g/m^3$, respectively. They were observed to be distributed in a log-normal form. Moreover, o-xylene and m, p-xylene exhibited a very good correlation (r=0.976). The slope of the regression equation between them was 3.07 which consisted with a previous reported value. The average ratio of toluene to benzene was 6.4 in April, May June and August. This value was comparable to the ones measured in other Asian cities. Two types of statistical analyses, cluster and factor analyses, were applied to the data in this study. Well characterization was made to understand the air quality of Bangkok area.

Effective Liquid-phase Nitration of Benzene Catalyzed by a Stable Solid Acid Catalyst: Silica Supported Cs2.5H0.5PMo12O40

  • Gong, Shu-Wen;Liu, Li-Jun;Zhang, Qian;Wang, Liang-Yin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1279-1284
    • /
    • 2012
  • Silica supported $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ catalyst was prepared through sol-gel method with ethyl silicate-40 as silicon resource and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen adsorption-desorption and potentiometric titration methods. The $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ particles with Keggin-type structure well dispersed on the surface of silica, and the catalyst exhibited high surface area and acidity. The catalytic performance of the catalysts for benzene liquid-phase nitration was examined with 65% nitric acid as nitrating agent, and the effects of various parameters were tested, which including temperature, time and amount of catalyst, reactants ratio, especially the recycle of catalyst was emphasized. Benzene was effectively nitrated to mononitro-benzene with high conversion (95%) in optimized conditions. Most importantly, the supported catalyst was proved has excellent stability in the nitration progress, and there were no any other organic solvent and sulfuric acid were used in the reaction system, so the liquid-phase nitration of benzene that we developed was an eco-friendly and attractive alternative for the commercial technology.

Isobaric Vapor-Liquid Equilibrium of 1-propanol and Benzene System at Subatmospheric Pressures (일정압력하에서 1-propanol/benzene 계의 기-액 상평형)

  • Rho, Seon-Gyun;Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.222-228
    • /
    • 2018
  • Benzene is one of the most widely used basic materials in the petrochemical industry. Generally, benzene exists as a mixture with alcohols rather than as a pure substance. Further, the alcohols-added mixtures usually exhibit an azeotropic composition. In this context, knowledge of the phase equilibrium behavior of the mixture is essential for its separation and purification. In this study, the vapor-liquid equilibrium data were measured in favor of a recirculating VLE apparatus under constant pressure for the 1 - propanol / benzene system. The measured vapor - liquid equilibrium data were also correlated by using the UNIQUAC and WILSON models and the thermodynamic consistency test based on the Gibbs/Duhem equation was followed. The results of the phase equilibrium experiment revealed RMSEs (Root Mean Square Error) and AADs (Average Absolute Deviation) of less than 0.05 for both models, indicating a good agreement between the experimental value and the calculated value. The results of the thermodynamic consistency test also confirmed through the residual term within ${\pm}0.2$.

Crystal Structure of a Benzene Sorption Complex of Dehydrated Fully $Cd^{2+}$-Exchanged Zeolite X

  • 김양;염영훈;최은영;김안나;한영욱
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1222-1227
    • /
    • 1998
  • The crystal structure of a benzene sorption complex of fully dehydrated Cd2+-exchanged zeolite X, Cd46Si100Al92O384·43C6H6 (a=24.880(6) Å), has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21 ℃. The crystal was prepared by ion exchange in a flowing stream of 0.05 M aqueous Cd(NO3)2 for 3 d, followed by dehydration at 400 ℃ and 2 x 10-6 Torr for 2 d, followed by exposure to about 92 Torr of benzene vapor at 22 ℃. The structure was determined in this atmosphere and refined to the final error indices R1=0.054 and Rw=0.066 with 561 reflections for which I > 3σ(I). In this structure, Cd2+ ions are found at four crystallographic sites: eleven Cd2+ ions are at site 1, at the centers of the double six-oxygen rings; six Cd2+ ions lie at site I', in the sodalite cavity opposite to the double six-oxygen rings; and the remaining 29 Cd2+ ions are found at two nonequivalent threefold axes of unit cell, sites Ⅱ' (in the sodalite cavity ) and site Ⅱ (in the supercage) with occupancies of 2 and 27 ions, respectively. Each of these Cd2+ ions coordinates to three framework oxylkens, either at 2.173(13) or 2.224(10) Å, respectively, and extends 0.37 Å into the sodalite unit or 0.60 Å into the supercage from the plane of the three oxygens to which it is bound. The benzene molecules are found at two distinct sites within the supercages. Twenty-seven benzenes lie on threefold axes in the large cavities where they interact facially with the latter 27 site-Ⅱ Cd2+ ions (Cd2+-benzene center=2.72 Å; occupancy=27 molecules/32 sites). The remaining sixteen benzene molecules are found in 12ring planes; occupancy=16 molecules/16 sites. Each hydrogen of these sixteen benzenes is ca. 2.8/3.0 Å from three 12-ring oxygens where each is stabilized by multiple weak electrostatic and van der Waals interactions with framework oxygens.