• Title/Summary/Keyword: Benzene

Search Result 1,928, Processing Time 0.031 seconds

A Comparison on the Characteristics of Benzene Exposure between the Coal chemical and Petrochemical refining method during Turnaround (석유 및 석탄화학의 대보수작업중 벤젠노출 특성 비교)

  • Chung, Eun-Kyo;Yu, Gye-Muk;Shin, Jung-Ah;Kwon, Ji-Woon;Park, Hyun-Hee;Chung, Kwang-Jae;Lee, Jong-Han;Lee, In-Seop;Kang, Seong-Kyu;Ryu, Hyang-Woo;Kim, Young-Sun;Lee, Byung-Kyu;Jang, Jae-Kil;Kim, Won;Kim, Jung-Man
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.3
    • /
    • pp.147-155
    • /
    • 2010
  • This study was conducted to investigate the benzene exposure levels in coal chemical and petrochemical refining industries during BTX turnaround (TA) processes where benzene was being produced. Three companies producing benzene were selected, one coal chemical and two petrochemical industries. TA processes were classified into three stages: shut down, maintenance, and start up. Data was analyzed by classifying the refining method into 2 groups (Petrochemistry, Coal chemistry) for 823 workers. Comparing the data from petrochemical industries with data from a coal chemical refining industry, while benzene concentration levels of long-term samples during TA were not statistically different (p> 0.05), those levels of short-term samples were significantly different (p< 0.001). About 4.79 % of data in petrochemical industries exceed the occupational exposure limits (OELs) of benzene, 1 ppm. In a coal refining methods, about 15.7% exceeded the benzene OELs. The benzene concentrations in maintenance and start up stage of TA for petrochemical refineries were higher than those in a coal chemical refinery (p <0.01). These findings suggest that the coal chemical refining site requires more stringent work practice controls compare to petrochemical refining sites during TA processes. Personal protective equipments including organic respirators should be used by TA workers to protect them from benzene overexposure.

Reliability Analysis on Safety Instrumented System by Using Safety Integrity Level for Fire.Explosion Prevention in the Ethyl Benzene Processes (Ethyl Benzene 공정에서 화재.폭발방지를 위하여 안전건전성수준을 이용한 안전장치시스템의 신뢰도 분석)

  • Ko, Jae-Sun;Kim, Hyo;Lee, Su-Kyoung
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this work is to analyze quantitatively if the safety instrumented system(SIS) like the pressure safety valves(PSV) in the processes of ethyl benzene plant have been designed relevantly to the safety integrity level because overpressure in the benzene or ethyl benzene columns causes the explosive reactions, fires and reactor explosions. The safety integrity level(SIL) 3 has been adopted as a target level of SIS based on the general data of the Probability of Failure on Demand of PSV, $1.00E-4{\sim}1.00E-3$. The standard model of the reliability has been set up and then the fault tree analysis of it has been carried out to get the PFD of SIS, and the results show 8.97E-04, 5.37E-04, 5.37E-04 for benzene prefractionator column, benzene column and EB column, respectively. Thus, we conclude that the SIS is designed to fulfill the condition of SIL3, and when the partial stroke test for the control valve are carried out every sixth month, the SIS of each column is expected to increase its reliability up to $22{\sim}27%$.

Isothermal Vapor-Liquid Equilibria at 333.15 K and Excess Molar Volumes and Refractive Indices at 303.15 K for the Mixtures of Propyl vinyl ether + Ethanol + Benzene (Propyl vinyl ether+Ethanol+Benzene 혼합계의 333.15 K에서의 등온 기액평형과 303.15 K에서의 과잉물성 및 굴절율편차)

  • Hwang, In-Chan;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • Alkyl vinyl ethers such as methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, butyl vinyl ether and isobutyl vinyl ether are usually used as industrial solvents and chemical intermediates in the chemical or pharmaceutical industry. Recently, they are popularly used as raw materials for polymer electrolyte membrane fuel cells and as cellulose dyeing assistants. However, very few investigations about process design and operation data were reported for alkyl vinyl ether compounds and there are no data for propyl vinyl ether(PVE) systems as far as we know. In this work, the isothermal VLE data are reported at 333.15 K for the ternary systems of {PVE + ethanol + benzene} by using headspace gas chromatography(HSGC) and these VLE data were correlated using Wilson, NRTL and UNIQUAC equations. The excess volumes($V^E$) and deviations in molar refractivity(${\Delta}R$) data are also reported for the sub binary systems {PVE + ethanol}, {ethanol + benzene} and {PVE + benzene} at 303.15 K. These data were correlated with Redlich-Kister equation. In addition, isoclines of $V^E$ and DR for ternary system {PVE + ethanol + benzene} were also calculated from Radojkovi equation.

Functional Gene Analysis to Identify Potential Markers Induced by Benzene in Two Different Cell Lines, HepG2 and HL-60

  • Kim, Youn-Jung;Song, Mi-Kyung;Sarma, Sailendra Nath;Choi, Han-Saem;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.3
    • /
    • pp.183-191
    • /
    • 2008
  • Volatile organic compounds (VOCs) are common constituents of cleaning and degreasing agents, paints, pesticides, personal care products, gasoline and solvents. And VOCs are evaporated at room temperature and most of them exhibit acute and chronic toxicity to human. Benzene is the most widely used prototypical VOC and the toxic mechanisms of them are still unclear. The multi-step process of toxic mechanism can be more fully understood by characterizing gene expression changes induced in cells by toxicants. In this study, DNA microarray was used to monitor the expression levels of genes in HepG2 cells and HL-60 cells exposed to the benzene on IC20 and IC50 dose respectively. In the clustering analysis of gene expression profiles, although clusters of HepG2 and HL-60 cells by benzene were divided differently, expression pattern of many genes observed similarly. We identified 916 up-regulated genes and 1,144 down-regulated genes in HepG2 cells and also 1,002 up-regulated genes and 919 down-regulated genes in HL-60 cells. The gene ontology analysis on genes expressed by benzene in HepG2 and HL-60 cells, respectively, was performed. Thus, we found some principal pathways, such as, focal adhesion, gap junction and signaling pathway in HepG2 cells and toll-like receptor signaling pathway, MAPK signaling pathway, p53 signaling pathway and neuroactive ligand-receptor interaction in HL-60 cells. And we also found 16 up-regulated and 14 down-regulated commonly expressed total 30 genes that belong in the same biological process like inflammatory response, cell cycle arrest, cell migration, transmission of nerve impulse and cell motility in two cell lines. In conclusion, we suggest that this study is meaningful because these genes regarded as strong potential biomarkers of benzene independent of cell type.

BENZENE AND LEUKEMIA An Epidemiologic Risk Assessment

  • Rinsky Robert A.;Smith Alexander B.;Hornung Richard;Filloon Thomas G.;Young Ronald J.;Okun Andrea H.;Landrigan Philip J.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.651-657
    • /
    • 1994
  • To assess quantitatively the association between benzene exposure and leukemia, we examined the mortality rate of a cohort with occupational exposure to benzene. Cumulative exposure for each cohort member was estimated from historical air-sampling data and, when no sampling data existed, from interpolation on the basis of existing data. The overall standardized mortality ratio (a measure of relative risk multiplied by 100) for leukemia was 337 (95 percent confidence interval, 154 to 641), and that for multiple myeloma was 409 (95 percent confidence interval, 110 to 1047). With stratification according to levels of cumulative exposure, the standardized mortality ratios for leukemia increased from 109 to 322, 1186, and 6637 with increases in cumulative benzene exposure from less than 40 parts per million-years (ppm-years), to 40 to 199, 200 to 399, and 400 or more. respectively. A cumulative benzene exposure of 400 ppm years is equivalent to a mean annual exposure of 10 ppm over a 40-year working lifetime; 10 ppm is the currently enforceable standard in the United States for occupational exposure to benzene. To examine the shape of the exposure-response relation, we performed a conditional logistic-regression analysis, in which 10 controls were matched to each cohort member with leukemia. From this model, it can be calculated that protection from benzene induced leukemia would increase exponentially with any reduction in the permissible exposure limit.

  • PDF

Effects of Benzene, Phenol and Hydroquinone on Proliferation, Differentiation and Migration of Human Eosinophilic EoL-1 Cells

  • Moon, So-Hee;Yang, Eun-Ju;Song, Bo-Bae;Kim, Bo-Mi;Lee, Ji-Sook;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.16 no.3
    • /
    • pp.179-185
    • /
    • 2010
  • Benzene is known as a ubiquitous air pollutant and has a carcinogenic influence on the human body. Benzene is also metabolized to other volatile organic compounds (VOCs) in the body such as phenol and hydroquinone (HQ). The metabolites are accumulated and further oxidized by myeloperoxidase in bone marrow. They act as toxic agents and cause a variety of diseases, including cancer, atopic dermatitis and asthma. In this study, we examined the effects of benzene and its metabolites on proliferation, differentiation and chemotaxis of EoL-1 cells, the human eosinophilic leukemia cell line. These chemicals had no effect on the proliferation of EoL-1 cells. Benzene decreased the differentiation of EoL-1 cells induced by butyric acid. HQ was induced the cell death during butyric acid-induced EoL-1 cell differentiation. In a chemotaxis experiment, benzene, phenol and HQ enhanced the cell migration induced by Lkn-1 but not by MCP-1, eotaxin, MIP-$1{\alpha}$ and RANTES. These findings provide the effect of VOCs on the regulation of eosinophil-involved immune response.

Low-Temperature Thermal Decomposition of Industrial N-Hexane and Benzene Vapors (산업 발생 노르말헥산과 벤젠 증기의 저온 분해)

  • Jo Wan-Kuen;Lee Joon-Yeob;Kang Jung-Hwan;Shin Seung-Ho;Kwon Ki-Dong;Kim Mo-Geun
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.635-642
    • /
    • 2006
  • Present study evaluated the low-temperature destruction of n-hexane and benzene using mesh-type transition-metal platinum(Pt)/stainless steel(SS) catalyst. The parameters tested for the evaluation of catalytic destruction efficiencies of the two volatile organic compounds(VOC) included input concentration, reaction time, reaction temperature, and surface area of catalyst. It was found that the input concentration affected the destruction efficiencies of n-hexane and benzene, but that this input-concentration effect depended upon VOC type. The destruction efficiencies increased as the reaction time increased, but they were similar between two reaction times for benzene(50 and 60 sec), thereby suggesting that high temperatures are not always proper for thermal destruction of VOCs, when considering the destruction efficiency and operation costs of thermal catalytic system together. Similar to the effects of the input concentration on destruction efficiency of VOCs, the reaction temperature influenced the destruction efficiencies of n-hexane and benzene, but this temperature effect depended upon VOC type. As expected, the destruction efficiencies of n-hexane increased as the surface area of catalyst, but for benzene, the increase rate was not significant, thereby suggesting that similar to the effects of the re- action temperature on destruction efficiency of VOCs, high catalyst surface areas are not always proper for economical thermal destruction of VOCs. Depending upon the inlet concentrations and reaction temperatures, almost 100% of both n-hexane and benzene could be destructed, The current results also suggested that when applying the mesh type transition Metal Pt/SS catalyst for the better catalytic pyrolysis of VOC, VOC type should be considered, along with reaction temperature, surface area of catalyst, reaction time and input concentration.

Studies on the Charge-transfer Complex including Aflatoxin $B_1$ -Part I. Charge-transfer Complex with Benzene- (Aflatoxin $B_1$ Charge-transfer Complex에 관(關)한 연구(硏究) -제1보(第一報) Benzene과의 Charge-transfer Complex-)

  • Noh, Ick-Sam;Lee, Kang-Heup
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.143-148
    • /
    • 1974
  • The interaction of the carcinogenic mycotoxin, Aflatoxin $B_1$, with the electron-donating molecule, benzene, was studied spectrophotometrically. The formation of charge-transfer complex between Aflatoxin $B_1$ and benzene in the presence of zinc chloride was observed and the apparent equilibrium constant of this charge-transfer complex was found to be 0.198 (liter $mole^{-1}$). It is assumed that, as the result of this study, some charge-transfer complexes could be formed between the weak electron-accepting Aflatoxin $B_1$ and strong electron-donating molecules, and the spectral changes occurred in the binding of Aflatoxin $B_1$ with proteins or DNA is attributed to the existence of charge-transfer type interaction.

  • PDF

Benzene Oxidation Characteristics of Cu/γ - Al2O3 Catalyst (Cu/γ - Al2O3 촉매를 적용한 벤젠산화반응특성)

  • Choi, Ook;Kyung, Dae-Hyun;Park, Yeong-Seong
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.256-262
    • /
    • 2014
  • Catalytic oxidation characteristics of benzene as a VOC was investigated in a fixed bed flow reactor using $Cu/{\gamma}-Al_2O_3$ catalyst. The parametric tests were conducted at the reaction temperature range of $200{\sim}500^{\circ}C$, benzene concentration of 400~650 ppm, gas flow rate of 50~100 cc/min, and space velocity range of $7,500{\sim}22,500hr^{-1}$. The property analyses by using the BET, SEM, TGA and the conversion of catalytic oxidation of benzene were examined. The experimental results showed that the conversion was increased with decreasing benzene concentration, gas flow rate and space velocity. Benzene oxidation reaction over $Cu/{\gamma}-Al_2O_3$ catalyst could be expressed as the first order homogeneous reaction of which the activation energy was 17.2 kcal/mol and frequency factor was $1.33{\times}10^6sec^{-1}$.

Status of benzene exposure and suggested countermeasures for petrochemical workers in the Yeosu Industrial complexs (여수국가산업단지 석유화학산업 근로자들의 벤젠 노출 실태와 관리대책)

  • Choi, Sang Jun;Kim, Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.4
    • /
    • pp.310-321
    • /
    • 2007
  • Status of benzene exposure was evaluated upon petrochemical workers in the Yeosu Industrial Complex, based on questionnaire responses by workers, review of previous work environment assessment reports between 1996 and 2004, in addition to short-term exposure measurements for unit tasks in the field. Questionnaire results showed that workers in the field were suffering concern on and symptoms of respiratory diseases, cancers or other illnesses of unknown causes. In particular, workers were highly worried about the risk of exposure to chemical hazards including benzene, while conducting specific tasks (e.g. sampling, draining, gauging) among normal operations during which equipments are opened and contents are exposedin the air, as well as periodic turnaround (TA) task. However, the review of previous work environment assessment reports found out that short-term exposure assessment data for unit tasks accounted for less than 1% of total data, and most of them were on 8-hr average exposure level. It also turned out that benzene was not detected in 83% of total samples, suggesting routine but pointless sampling has been repeated. Short-term exposure level was assessed focusing on tasks with high level of complaints on the exposure risk, based on the questionnaire responses. As predicted, a maximum of 741 ppm benzene exposure was reached depending on types and conditions of operations involved. In conclusion, these findings suggest that the evaluation and management on the short-term high exposure tasks including turnaround are crucial in reducing benzene exposure and preventing haematopoietic cancer in workers in the petrochemical industry.