• Title/Summary/Keyword: Benzaldehydes

Search Result 29, Processing Time 0.019 seconds

Chromic Anhydride-Chlorosilanes. An Application to Benzylic Oxidation

  • Jong Gun Lee;Dong Soo Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.149-153
    • /
    • 1991
  • Chlorotrimethylsilane reacts with chromic anhydride to form a very reactive neutral chromium (Ⅵ) oxidizing agent. The active oxidizing species is not trimethylsilyl chlorochromate as was previously reported but chromyl chloride generated in equilibrium concentration. This oxidizing agent was proved very suitable for benzylic oxidations of toluenes and alkylbenzenes to benzaldehydes and aralkyl ketones. Dichlorodimethylsilane and trichlormethylsilane also react with chromic anhydride to form chromyl chloride in an equilibrium concentration.

Benzaldehyde as a new class plant growth regulator on Brassica campestris

  • Choi, Geun-Hyoung;Ro, Jin-Ho;Park, Byoung-Jun;Lee, Deuk-Yeong;Cheong, Mi-Sun;Lee, Dong-Yeol;Seo, Woo-Duck;Kim, Jin Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.159-164
    • /
    • 2016
  • Plant growth regulator is an essential pesticide to date while the available active ingredient is not well understood unlike fungicide, insecticide and herbicide. This study was aimed to evaluate a new chemical class of plant growth regulator, and the total of 92 benzene derivatives were screened for their germination and early stage of the root growth regulation on Brassica campestris. Thirty benzaldehydes, nine acids, one amide, and one ester showed potent root growth inhibitory activity (>70 % inhibition) while only salicylaldehyde showed potent germination inhibition ($IC_{50}=81.2mg/L$) suggesting that benzaldehyde was a key module candidate for the growth inhibition. Benzaldehydes were further evaluated for root growth inhibition. 2,3-Dihydroxybenzaldehyde and salicylaldehyde showed $IC_{50}$ values of 8.0 and 83.9 mg/L, respectively. On the other hand, salicylaldehyde, and 2,4,5-trihydroxybenzaldehyde were found to have root growth promotion effects less than 10 mg/L. This result suggests that the benzaldehyde is a new class candidate for plant growth regulator.

Oxidation of Benzyl Alcohols with Extraordinarily High Kinetic Isotope Effects

  • Jo, Myeong-Ran;Seok, Won-K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3003-3008
    • /
    • 2011
  • Reactions of benzyl alcohol and its derivatives by [Ru$^{IV}$(tpy)(dcbpy)(O)]$^{2+}$ (tpy = 2,2':6',2"-terpyridine; dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) leading to the corresponding benzaldehydes in acetonitrile and water have been studied. Kinetic studies show that the reaction is first-order in both alcohol and oxidant, with k = 1.65 (${\pm}$ 0.1) $M^{-1}s^{-1}$ at $20^{\circ}C$, ${\Delta}H^{\ddag}$ = 4.3 (${\pm}$ 0.1) kcal/mol, ${\Delta}S^{\ddag}$ = -22 (${\pm}$ 1) eu, and $E_a$ = 4.9 (${\pm}$ 0.1) kcal/mol. High ${\alpha}$ C-H kinetic isotope effects are observed, but O-H solvent isotope effects are negligible. Spectral evidences with the isotope effects suggest that oxidation of benzyl alcohols occurs by a two-electron, hydride transfer. The catalytic cycles of aerobic benzyl alcohol oxidation are employed.

Synthesis, Characterization and Bioevaluation of New Tetrahydroquinazolines (새로운 Tetrahydroquinazoline의 합성, 구조 결정 및 생물학적 평가)

  • Murthy, Y.L.N.;Acharyulu, P.V.N.;Dubey, P.K.;Sundari, T. Tirunala
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.257-265
    • /
    • 2008
  • The synthesis, characterization and bioevaluation of five new tetrahydroquinazolines was reported. Initially cyclohexanones were prepared and they were used as synthons to get the target molecules. These were condensed with substituted benzaldehydes and the resulting chalcones were treated with guanidine hydrochloride . All the molecules were non-toxic to human cells and showed significant antibacterial activity.

Synthesis and NMR Studies of (E)-1-Aryl-3-(2-pyrrolyl)-2-propenones and (E)-3-Aryl-1-(2-pyrrolyl)-2-propenones

  • Han Lee, In-Sook;Jeoung, Eun Ji;Lee, Chang Kiu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.936-942
    • /
    • 2013
  • Series of (E)-1-aryl-3-(2-pyrrolyl)-2-propenones, that were aldol condensation products between pyrrole-2-carbaldehyde and m- and p-substituted acetophenones, were prepared and their $^1H$ and $^{13}C$ NMR spectra were examined to obtain the information on the conformation of the enone system. Similar studies were carried out with (E)-3-aryl-1-(2-pyrrolyl)-2-propenones that were prepared from 2-acetylpyrrole and m- and p-substituted benzaldehydes. The substituent chemical shifts were studied by applying the Hammett relationship.

Antifungal Activities of Biorelevant Complexes of Copper(II) with Biosensitive Macrocyclic Ligands

  • Raman N.;Joseph J.;Velan A. Senthil Kumara;Pothiraj C.
    • Mycobiology
    • /
    • v.34 no.4
    • /
    • pp.214-218
    • /
    • 2006
  • Four copper(II) complexes have been prepared using macrocyclic ligands. The macrocyclic ligands have been synthesized by the condensation reaction of diethyl phthalate with Schiff bases derived from o-phenylene diamine and Knoevenagel condensed ${\beta}-ketoanilides$ (obtained by the condensation of acetoacetanilide and substituted benzaldehydes). The ligands and copper complexes have been characterized on the basis of Microanalytical, Mass, UV-Vis., IR and CV spectral studies, as well as conductivity data. On the basis of spectral studies, a square-planar geometry for the copper complexes has been proposed. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans. All the synthesized copper complexes showed stronger antifungal activities than free ligands. The minimum inhibitory concentrations (MIC) of the copper complexes were found in the range of $8{\sim}28\;{\mu}g/ml$. These compounds represent a novel class of metal-based antifungal agents which provide opportunities for a large number of synthetic variations for modulation of the activities.

Simple Method of Preparation and Characterization of New Antifungal Active Biginelli Type Heterocyclic Compounds

  • Pothiraj, C.;Velan, A. Senthilkumara;Joseph, J.;Raman, N.
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.66-69
    • /
    • 2008
  • A simple, efficient and cost effective method is described for the synthesis of Biginelli type heterocyclic compounds of dihydropyrimidinones analogous. They were prepared from a reaction mixture consisting of substituted benzaldehydes, thiourea and ethylacetoacetate using ammonium dihydrogenphosphate as catalyst. The procedure for the preparation of the compounds is environmentally benign and safe which is advantageous in terms of experimentation, catalyst reusability, yields of the products, shorter reaction times and preclusion of toxic solvents. The four new synthesised compounds were tested for their antifungal activity. They have good antifungal activity comparing to the standard (Fluconazole).

A New Mechanish of Bright Plating on the Ground of Analysis of Rate Nucleafion and Growth (결정의 발생속도식과 송장속도식의 해석에 지초한 광택니켈도금의 새로운 메카니즘)

  • 박병각;송재설;김창진
    • Journal of the Korean institute of surface engineering
    • /
    • v.21 no.2
    • /
    • pp.76-82
    • /
    • 1988
  • The bright nickel electroplatings were carried out the Watt bath containg a solobel saccharin as class I brightner and para substituted benzaldehydes as class II one. Extended Huckel MO calculation was done and polarization was measured to examine between $\pi$-electron density and the brightness. The correlation is also investigated between $\pi$-electron density of oxygen atom of aldehyde group and slope of polarization curve. As a result of the analysis of rate equation of nucleation, the surface energy of the deposited particle was obtained from the slope of the plot of $\ell$nI against 1/η2, and also the reat equation of nucleation found to influnced on the leveling on the basis of adsorption theory. We have proposed the general electroplating mechanism that is applied other to all other electroplating but nickel one. The above elucidated mechanism can be extended can be extended to the all electroplating other than bright nickel electroplating.

  • PDF

Carbonylation of Benzyl Alcohols and Benzyl Bromide to Phenylacetic Acids with Rhodium(Ⅰ) and Iridium(Ⅰ) Complexes

  • Chin Chong Shik;Jung Ho Jin;Hong Seung-gweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.391-395
    • /
    • 1992
  • Rhodium(I) and iridium(II) complexes, M(Cl$O_4$)(CO)$(PPh_3)_2$ and [M(CO)$(PPh_3)_3$]Cl$O_4$ (M = Rh, Ir), and RhX(CO)$(PPh_3)_2$ (X = Cl, Br, OH) catalyze the carbonylation of benzyl alcohols to produce phenylacetic acids under 6 atm of CO at $110^{\circ}C$ in deuterated chloroform. Benzyl alcohols initially undergo dehydration to give dibenzyl ethers which are then carbonylated to benzyl phenylacetates, and the hydrolysis of benzyl phenylacetate produces phenylacetic acids and benzyl alcohols. The carbonylation is accompanied with dehydrogenation followed by hydrogenolysis of benzyl alcohols giving benzaldehydes and methylbenzenes which are also produced by CO2 elimination of phenylacetic acids. Phenylacetic acid is also produced in the reactions of benzyl bromide with CO catalytically in the presence of Rh(Cl$O_4$)(CO)$(PPh_3)_2$ and $H_2O$, and stoichiometrically with Rh(OH)(CO)$(PPh_3)_2$ in the absence of $H_2O$.

Studies on the Semicarbazone Formation of Mono substituted Benzaldehydes (일치환 Bezaldehyde 의 Semicarbazone 생성 반응에 관한 연구)

  • Kim, Yong-In;Kim, Chang-Mean
    • Journal of the Korean Applied Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.93-105
    • /
    • 1990
  • Semicarbazone formation of nine monosubstituted benzaldehydes was studied kinetically in 20% methanol buffer solution at 15, 25, 35, and $45^{circ}C$. The rate of p-nitrobenzaldehyde semicarbazone formation is 2.7 times as fast as that of benzaldehyde, while p-hvdroxybenzaldehyde is 3.6 times as slow as that of benzaldehyde. Activation energies for p-chlorobenzaldehyde, benzaldehyde, p-methylbenzaldehyde, p-methoxybenzaldshyde, p-hydroxybenzaldehyde, and p-dimethylaminobenzaldehyde semicarbazone formation are calculated as 5.80, 6.19, 6.57, 7.06, 8.03, and 6.46 kcal/mol respectively. It is concluded from the effect of ionic strength that the reaction is affected by not ions but neutral molecules involving hydrogen bonding between oxygen atom of carbonyl group and hydrogen atom of acid-catalyst, and concerted attack of the necleophilic reagent, free base on carbonyl compound. Also, the effect of solvent composition is small in 20% and 50% methanol (and ethanol) aqueous solutions. The ${\rho}-{\sigma}$ plots for the rates of semicarbazone formation at pH 7.1 show a linear ${\rho}-{\sigma}$ relationship (${\rho}=0.14l$, in contrast to that at pH 2.75 and pH 5.4 corresponding to ${\rho}-{\sigma}$ correlations reparted by Jencks. The rate of semicarbazone formation at pH 5.4 show a relationship which is convex upward, resulting in a break in the curve but at pH 2.75, slight difference from a linear relationship. As a result of studying citric acid catalysis, second-order rate constants increase linearly with citric acid concentration and show a 2 times increase as the catalyst concentration is varied from 0.025 to 0.1 mol/1 at pH 2,9, but slight increase at pH 5.3. The rate-determining step is addition below pH 5 but is dehydration between pH 5 and 7. Conclusively, the rate-determining step of the reaction changes from dehydration to addition in respect to hydrogen ion activity near pH 5. The ortho: para rate ratio of the hydroxybenzaldehydes for semicarbazone formation is about 17 at $15^{\circ}C$. It is concluded that the results constitute strong evidence in favor of greater stabilization of p- than o-hydroxybenzaldehyde by substituent which donate electrons by resonance and is due to hydrogen bonding between the carbon-bound hydrogen of the-CHO group and the oxygen atom of the substituent.