• Title/Summary/Keyword: Benthic diffusive flux

Search Result 4, Processing Time 0.021 seconds

Analysis of Nitrogen and Phosphorus Benthic Diffusive Fluxes from Sediments with Different Levels of Salinity (염분농도에 따른 호소 퇴적물 내 질소 및 인 용출 특성 분석)

  • Seulgi Lee;Jin Chul Joo;Hee Sun Moon;Dong Hwi Lee;Dong Jun Kim;Jiwon Choi
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.85-96
    • /
    • 2023
  • The study involved the categorization of domestic lakes located in South Korea into three groups based on their salinity levels: upstream reservoirs with salinity less than 0.3 psu, estuarine reservoirs with salinity ranging from 0.3 to 2 psu, and brackish lagoons with salinity exceeding 2 psu. Subsequently, the research assessed variations in the concentrations of total nitrogen (T-N) and total phosphorus (T-P) in the sediment of these lakes using statistical analysis, specifically one-way analysis of variance (ANOVA). Additionally, a laboratory core incubation test was conducted to investigate the benthic nutrient fluxes in Songji lagoon (salinity: 11.80 psu), Ganwol reservoir (salinity: 0.73 psu), and Janggun reservoir (salinity: 0.08 psu) under both aerobic and anoxic conditions. The findings revealed statistically significant differences in the concentrations of T-N and T-P among sediments in the lakes with varying salinity levels (p<0.05). Further post-hoc analysis confirmed significant distinctions in T-N between upstream reservoirs and estuarine reservoirs (p<0.001), as well as between upstream reservoirs and brackish lagoons (p<0.01). For T-P, a significant difference was observed between upstream reservoirs and brackish lagoons (p<0.01). Regarding benthic nutrient fluxes, Ganwol Lake exhibited the highest diffusive flux of NH4+-N, primarily due to its physical characteristics and the inhibition of nitrification resulting from its relatively high salinity. The flux of NO3--N was lower at higher salinity levels under aerobic conditions but increased under anoxic conditions, attributed to the impact of salinity on nitrification and denitrification. Additionally, the flux of PO43--P was highest in Songji Lake, followed by Ganwol Lake and Janggun Reservoir, indicating that salinity promotes the diffusive flux of phosphate through anion adsorption competition. It's important to consider the influence of salinity on microbial communities, growth rates, oxidation-reduction processes, and nutrient binding forms when studying benthic diffusive nutrient fluxes from lake sediments.

Analysis of the Benthic Nutrient Fluxes from Sediments in Agricultural Reservoirs used as Fishing Spots (낚시터로 활용중인 농업용 저수지의 퇴적물 내 영양염류 용출 분석)

  • Joo, Jin Chul;Choi, Sunhwa;Heo, Namjoo;Liu, Zihan;Jeon, Joon Young;Hur, Jun Wook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.613-625
    • /
    • 2017
  • For two agricultural reservoirs that are rented for fishing spots, benthic nutrient fluxes experiment were performed two times with two sediments from fishing-effective zone and one sediment from fishing-ineffective zone using laboratory core incubation in oxic and anoxic conditions. During benthic nutrient fluxes experiment, the changes in DO, EC, pH, and ORP in the supernatant were not significantly different between fishing-effective zone and fishing-ineffective zone, and were similar to the sediment-hypolimnetic diffused boundary layer in agricultural reservoir. Except for $NO_3{^-}-N$, more benthic nutrient fluxes of $NH_4{^+}-N$, T-P, and $PO{_4}^{3-}-P$ from sediment to hypolimnetic was measured in anoxic than in oxic conditions (p<0.05). As the DO concentration in hypolimnetic decreases, the microorganism-mediated ammonification is promoted, the nitrification is suppressed, and finally the $NH_4{^+}-N$ diffuses out from sediment to hypolimnetic. Also, the diffusion of T-P and $PO{_4}^{3-}-P$ from sediments to hypolimnetic is accelerated through the dissociation of the phosphorus bound to both organic matters and metal hydroxides. The difference in the benthic nutrient diffusive fluxes between fishing-effective zone and fishing-ineffective zone was not statistically significant (p>0.05). Therefore, it was found that fishing activities did not increase the benthic nutrient diffusive fluxes to a statistically significant level. Due to the short fishing activities of 10 years and the rate-limited diffusion of the laboratory core incubation, the contribution of fishing activities on sediment pollution is estimated to be low. No significant correlation was found between the total amount of nutrients in sediment and the benthic nutrient diffusive fluxes in both aerobic and anaerobic conditions. Therefore, nutrients input from various nonpoint sources of watersheds are considered to be a more dominant factor rather than fishing activities in water quality deterioration, and both aeration and water circulation in hypolimnetic were required to suppress the anoxic environment in agricultural reservoirs.

A Study on the Measurement Method for Benthic Nutrient Flux in Freshwater Sediments (담수 퇴적물의 영양염 용출 측정 방법에 관한 고찰)

  • Kim, Kyung Hee;Kim, Sung-Han;Jin, Dal Rae;Huh, In Ae;Hyun, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.288-302
    • /
    • 2017
  • Accurate measurement of benthic nutrient fluxes (BNF) is a prerequisite for evaluating the effect of sediments on nutrient cycle in the surface water. The intact sediment cores were collected in July 2015 at the midstream of Nakdong River. We identified pre-incubation time (6, 12, 24 hr), dissolved oxygen concentration (90, 70, 50% saturation), diffusive boundary layer thickness (0, 0.6-0.8, 1.2-1.4 mm), and incubation temperature (10, 17, 20, $25^{\circ}C$) as the most important control factors, and measured the BNF fluctuation with the variation of these factors using the laboratory sediment core incubation method. Since the chemical composition, redox condition, hydrodynamic regimes and microbial activities at the sediment-water interface were changed as a result of the alteration of control factors, sediment core incubation should be conducted under as close to the natural conditions of study site as possible, in order to produce the results similar to actual values. Relative percentage differences between two replicates were below 20% in most control factors, which showed satisfactory precision for strict compliance with the experimental conditions and procedures. In the further studies, we will compare the results of core incubation with those of in situ measurements to confirm the accuracy of the sediment core incubation method.

Seasonal and Spatial Variations of Nutrient Fluxes in the Intertidal Flat of Keunso Bay, the Yellow Sea (서해 근소만 갯벌에서 영양염 플럭스의 계절 변화)

  • Kim, Kyung-Hee;Kim, Dong-Seon
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.225-238
    • /
    • 2008
  • In order to investigate the effects of intertidal sediments on the nutrient cycle in coastal environments, the benthic fluxes of ammonium, nitrate, nitrite, phosphate, and silicate at two stations on the intertidal flat of Keunso Bay were determined during each season. The efflux of ammonium was observed at S1 and resulted from the diffusion of remineralized ammonium and acceleration caused by the bioirrigation of macrofauna. The influx of ammonium at S2 was probably due to nitrification in the water column. The influx of nitrate was observed at both stations during all seasons, indicating that the nitrate in the pore water was removed by denitrification. Vigorous bioirrigation led to the efflux of dissolved inorganic nitrogen (DIN) at S1, whereas the influx of DIN at S2 was predominantly caused by denitrification. Contrary to the diffusive and bio-irrigated release of remineralized phosphate from the sediment at S1, the influx of phosphate was observed at S2, which may be attributable to adsorption onto iron oxides in the aerobic sediment layer. Silicate, which is produced by the dissolution of siliceous material, was mostly released from the sediment by molecular diffusion and bioirrigation. However, the influx of silicate was observed at S2 during spring and winter, which was ascribed to adsorption by particulate matter or assimilation by benthic microphytes. The annual fluxes of DIN were 328 mmol $m^{-2}yr^{-1}$ at S1 and -435 mmol $m^{-2}yr^{-1}$ at S2. The annual fluxes of phosphate were negative at both sites (-2.8 mmol $m^{-2}yr^{-1}$ at S1 and -28.9 mmol $m^{-2}yr^{-1}$ at S2), whereas the annual fluxes of silicate were positive at both sites (843 mmol $m^{-2}yr^{-1}$ at S1 and 243 mmol $m^{-2}yr^{-1}$ at S2).