• Title/Summary/Keyword: Benthic Organic Matter

Search Result 87, Processing Time 0.023 seconds

Prediction of Sediment-Bound Metal Bioavailability in Benthic Organisms: Acid Volatile Sulfide (AVS) Approaches

  • Song, Ki-Hoon
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.2
    • /
    • pp.101-108
    • /
    • 2002
  • Benthic organisms dwell in sediment-water interface that contains significant amount of organic and inorganic contaminants. Their feeding behavior is highly related with sediment itself and pore water in the sediments, especially in ease of deposit feeder (i.e. polychaete, amphipod). The acid volatile sulfide (AVS) is one of the important binding phases of sediment-bound metals in addition to organic matter and Fe and Mn oxide fractions in sediments, particularly in anoxic sediments. The AVS model is a powerful tool to predict metal bioavailability and bioaccumulation in benthic organisms considering SEM/AVS mole ratios in surficial sediments. However, several biogeochemical factors must be considered to use AVS model in the sediment-bound metal bioavailability.

Spatio-temporal Variation and Evaluation of Benthic Healthiness of Macrobenthic Polychaetous Community on the Coast of Ulsan (울산 연안 해역 저서다모류 군집의 시·공간 변동 및 저서건강도 평가)

  • Jeong, Bong Geun;Shin, Hyun Chool
    • Ocean and Polar Research
    • /
    • v.40 no.4
    • /
    • pp.223-235
    • /
    • 2018
  • This study was carried out to investigate benthic sedimentary environments and benthic polychaetous communities on the coast of Ulsan, located on the southern East Sea of Korea. This survey was conducted at 15 stations, four times seasonally in January, April, July and October 2016. From the coast to the outer sea, surface sediments turned into fine grained sediments. There were complex coarse-grained sedimentary facies in various forms in the coastal zones while those with mud facies were found in the offshore zone. Organic matter content (LOI) and sulfide amount (AVS) recorded extremely high values, and increased from the coast to the outer sea, showing a similar trend to mud content with depth. The benthic polychaetous community revealed a mean density of $525ind./m^2$, and the total species number of species was 84. The major dominant polychaetous species were Magelona japonica, Lumbrineris longifolia and Heteromastus filiformis throughout the four seasons. Magelona japonica was concentrated predominantly in shallow coastal areas, but was present in all the regions of the survey area. Lumbrineris longifolia showed higher density in offshore regions more than 30 m deep, whereas H. filiformis showed higher density in coastal areas less than 30 m in depth. As a result of cluster analysis, the study area was divided into three ecological areas according to species composition, such as the northern coastal area between Ulsan PortOnsan Port, the southern area around Hoeya River and the outer sea area. Benthic environments in the study area, as determined by AMBI and BPI index, maintained a healthy condition in all four seasons with the AMBI at a level above GOOD and BPI at a level above FAIR. As organic matter accumulation continues to take place in the Ulsan coastal area, it is essential that detailed research activities continue to be carried out and ongoing monitoring be maintained.

Ecological Importance of Benthic Microalgae in the Intertidal Mud Flat of Yeongheung Island; Application of Stable Isotope Analysis (SIA) (영흥도 조간대 갯벌 저서미세조류의 생태적 중요성; 안정동위원소 분석 활용)

  • Kang, Sujin;Choi, Bohyung;Han, Yongjin;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.80-88
    • /
    • 2016
  • In order to reconstruct a benthic foodweb structure and assess the role of benthic microalgaes as a diet source for benthos, we analyzed the carbon and nitrogen stable isotopes of diverse benthos (bivalves, crustaceans, gastropods and fishes) and potential diets (particulate organic matter, sedimentary organic matter, benthic microalgae, seagrass, and macroalgaes) in the intertidal mudflat surrounding Yeongheung Island. The ${\delta}^{13}C$ values of the diets indicated wide ranges (- 26.5‰ to - 8.4‰) while benthos showed a small range of ${\delta}^{13}C$ values (-12.1‰ to - 17.8‰), although they were in the same range. Except for green algaes among the macroalgaes as well as sedimentary organic matter, ${\delta}^{15}N$ values of the diet candidates ($5.7{\pm}1.0$‰) were lighter in comparison to those of the benthos ($11.8{\pm}1.9$‰). Based on the ${\delta}^{13}C$ and ${\delta}^{15}N$ data, the benthos were classified into 3 groups, indicating a different diet and trophic position. But benthic microalgae is the most important diet source for all three benthos groups based on their stable isotope ratios, suggesting benthic microalgae should be a main diet to the intertidal ecosystem. Hence this study highlights that the biomass of benthic microalgae as biological resource should be evaluated for the management of the intertidal ecosystem of Yeongheung Island.

Spatial Characteristic in Food Sources for Benthic Invertebrates in an Estuary Tidal flat: Carbon and Nitrogen Stable Isotope Analyses (안정동위원소 비를 이용한 하구 갯벌에 있어서 저서 무척추 동물의 유기물 기원의 공간적 특성)

  • Shin, Woo-Seok;Lee, Yong-Doo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.53-59
    • /
    • 2010
  • The spatial variability in the food chain structure of an estuarine environment(Nanakita estuarine, Japan) was investigated using stable carbon and nitrogen isotope. Potential organic matter sources(TP:Terrstrial Plant, MPOM:Marine particulate organic matter, BMA:Benthic microalgae, EPOM:Estuarine particulate organic matter), sedimentary organic matter and benthic invertebrates(Nuttallia olivacea and Nereidae) were sampled at four locations with different tidal flat types(e.g. sanddy, sanddy-muddy and muddy). The main objective of the present study was to determine food sources of Nuttallia olivacea and Nereidae along with small-scale spatial variability within the community of benthic invertebrates. TP(${\delta}^{13}C=-26.6{\pm}0.76$ and ${\delta}^{15}N=2.7{\pm}0.31$) and EPOM(${\delta}^{13}C=-25.5{\pm}0.13$ and ${\delta}^{15}N=5.2{\pm}0.46$) were isotopically distinct from BMA(${\delta}^{13}C=-16.3$ and ${\delta}^{15}N=6.2$) and MPOM(${\delta}^{13}C=-19.6{\pm}0.08$ and ${\delta}^{15}N=8.9{\pm}1.70$). ${\delta}^{13}C$ values of sedimentary organic matter showed a distinct gradient in the range of -27.4 to -22.8‰ with a declining trend from the upstream to the downstream stations. The stable carbon and nitrogen isotope values of benthic invertebrates in the study site was -22.8 to -18.4‰ for ${\delta}^{16}C$ and 8.1 to 11.9‰ or ${\delta}^{15}N$, respectively. Mixing model(Isosource) calculations based on stable isotope measurements showed that benthic invertebrates of Nuttallia olivacea and Nereidae were found to be dominated by MPOM and BMA in stations. Whereas, TP and EPOM showed little influence to benthic invertebrates. The current result suggests that the different contribution for benthic invertebrates should be affected by both seasonal variation and physical factor among stations.

Identification of the Food Sources-Metabolism of the Pacific Oyster Crassostrea gigas using Carbon and Nitrogen Stable Isotopic Ratios

  • Yang, Jin-Yong;Shin, Kyung-Hoon
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.279-284
    • /
    • 2009
  • In order to understand food sources-metabolism for the pacific oyster (Crassostrea gigas), the stable isotope ratios of carbon (${\delta}^{13}C$) and nitrogen (${\delta}^{15}N$) of its gut, gill, and muscle as well as potential food sources (particulate organic matter, sedimentary organic matter, benthic microalgae, seagrass detritus) were determined in Dongdae Bay. Average ${\delta}^{13}C$ and ${\delta}^{15}N$ values reflect that oysters primarily fed on sedimentary organic matter as opposed to suspended organic matter during summer and winter seasons. However, the relatively enriched $^{15}N$ values of particulate organic matter (>$250{\mu}m$) and sedimentary organic matter in the summer may be due to the photosynthetic incorporation of $^{15}N$-enriched nitrogen (DIN) or the spawning events of bivalves. Specific oyster tissues (gut, gill, and muscle) revealed different metabolic pathways, which were determined through analysis of ${\delta}^{13}C$ and ${\delta}^{15}N$ in each organ. The present results suggest the determination of carbon and nitrogen stable isotopes to be a useful approach in ecological research related to the food sources- metabolism of Crassostrea gigas.

Spatial Distribution of Benthic Macroinvertebrates at Three River Weirs in The Namhan River (남한강 본류 3개 보의 저서성 대형무척추동물의 공간적 분포)

  • Kown, Yongju;Kim, Jin-Young;Kim, Piljae;Kim, Jungwoo;Kim, Jeong-KI;Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.36-47
    • /
    • 2020
  • Three large scale weirs were constructed 2010 - 2011 in the Namhan river, Korea. The purpose of this study was to investigate the spatial distribution of benthic macroinvertebrates and the influence of environmental factors at the weirs 2014 - 2015. The number of species was higher in the riparian zone than in the transition or the limnetic zone. This seems to be because of the diversification of microhabitats and food sources according to the development of littoral zones. From the riparian zone to the limnetic zone, the individual abundance proportion of gathering collectors among functional feeding groups decreased, and that of filtering collectors increased. In the limnetic zone, sprawlers and climbers among habitat orientation groups decreased, and burrowers increased. This means that coarse particulate organic matter originated from land or riparian zone was transformed to fine particulate organic matter in the limnetic zone. Asian clam (Corbicula fluminea) and chironomids were dominant species based on individual abundance. Asian clam, a major taxon considering biomass, was abundant toward the limnetic zone. This is becasue of the shallow depth, suitable water current, slightly coarse substrate, and good water quality. There was no significant relationship between the water quality and the characteristics of the benthic macroinvertebrate community because the water quality was spatially not heterogenous. The more influential factors for benthic community were physical factors, especially water depth. Water depth showed a markedly significant correlation with Shannon-Weaver's species diversity (r=-0.90), Margalef's species richness (r=-0.82), and McNaughton's dominance (r=0.86). Water depth showed a positive correlation (r=0.68) with the Kong and Kim BMSI (Bentic Macroinverebrates Streambed Index), and this may be related to the coarse substrate of the limnetic zone.

Decomposition Characteristic of Sedimentary Organic Matters by Bacteria (세균에 의한 퇴적유기물의 분해 특성에 관한 연구)

  • Shin, Woo-Seok;Kang, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.132-136
    • /
    • 2011
  • The Temporal variability in the food chain structure of bacteria in the sedimentary organic matter was investigated using stable isotope and fatty acid. Potential organic matter sources (Land plant, Marine POM, benthic microalgae, Riverine POM), sedimentary organic matter and bacteria were sampled in Gamo largoon and Nanakita estuary. The main objective of the present study was to determine food sources of bacteria along with temporal variability. Land plant (${\delta}^{13}C$ = -26.6‰ and ${\delta}^{15}N$ = 3.6‰) and Riverine POM (${\delta}^{13}C$ = -25.5‰ and ${\delta}^{15}N$ = 8.9‰) were isotopically distinct from benthic microalgae (${\delta}^{13}C$ = -16.3‰ and ${\delta}^{15}N$ = 6.2‰) and Marine POM (${\delta}^{13}C$ = -20.3‰ and ${\delta}^{15}N$ = 10.3‰). ${\delta}^{13}C$ values of sedimentary organic matter showed a distinct gradient in the range of -20.7‰ to -191‰. The stable carbon and nitrogen isotope values of bacteria in the study were -20.8‰ to -18.6‰ for ${\delta}^{13}C$ and 6.5‰ to 8.6‰ for ${\delta}^{15}N$. From this results based on stable isotope measurements showed that in the bacteria was found to be dominated by Marine POM and Benthicmicoralge during 0 to 20 day. Whereas, terrestrial plant and riverine POM showed little in fluence to bacteria during the experiment.

Distribution of Macrobenthos at the Mudflat in the Mouth of Muan Bay (무안만 초입 인근 갯벌의 대형저서동물 분포 특성)

  • Choi, Bo-Hyun;Lee, Kyoung-Seon
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.75-82
    • /
    • 2017
  • Macrobenthos composes the dominant biomass at the mudflat and play an important role in the maintenance of the benthic environments. Organic matter in sedimentary environment affects habitat, feeding behaviors, and survival of benthos. In this study, the relationship between organic matter content in sediment and the distribution of macrobenthos was discussed at two margins (Mokpo and Aphae area) in the mouth of Muan bay. Sediment TOC was higher at Mokpo than at Aphae through the four seasons, and the pollution indicator organism Musculista senhousia was dominant in this area. The macrobenthos distribution was clearly divided into two areas correlated with sediment organic matter content in the mouth of Muan bay.

Application of a Numerical Model for the Prediction of Vertical Profiles of Electron Acceptors Based on Degradation of Organic Matter in Benthic Sediments (퇴적 유기물 분해과정에 따른 물질 거동 변화 예측을 위한 수치모델 적용)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.151-157
    • /
    • 2005
  • A one-dimensional numerical model was developed to simulate vertical profiles of electron acceptors and their reduced species in benthic sediments. The model accounted for microbial degradation of organic matter and subsequent chemical reactions of interest using stoichiometric relationships. Depending on the dominant electron acceptors utilized by microorganisms, the benthic sediments were assumed to be vertically subdivided into six zones: (1) aerobic respiration, (2) denitrification, (3) manganese reduction, (4) iron reduction, (5) sulfate reduction, and (6) methanogenesis. The utilizations of electron acceptors in the biologically mediated oxidation of organic matter were represented by Monod-type expression. The mass balance equations formulated for the reactive transport of organic matter, electron acceptors, and their corresponding reduced species in the sediments were solved utilizing an iterative multistep numerical method. The ability of model to simulate a freshwater sediments system was tested by comparing simulation results against published data obtained from lake sediments. The simulation results reasonably agreed with field measurements for most species, except for ammonia. This result showed that the C/N ratio (106/16) in the sediments is lower than what the Redfield formula prescribes. Since accurate estimates of vertical profiles of electron acceptors and their reduced species are important to determine the mobility and bioavailability of trace metals in the sediments, the model has potential application to assess the stability of selected trace metals in the sediments.

Variation in trophic pathways and food web characteristics revealed by stable isotopes in an intermittent stream system of the Inukami River, Japan

  • Shin, Hyun-Seon;Amahashi, Nozomi;Ao, Lan;Mitamura, Osamu
    • Animal cells and systems
    • /
    • v.15 no.3
    • /
    • pp.235-241
    • /
    • 2011
  • To examine variation in trophic pathways and the characteristics of food webs from organic matters to aquatic insects, we used stable isotopes to study an intermittent stream system of the Inukami River, Japan. The aquatic insects, including Glossosoma spp., Chironominae spp., Stenelmis spp., Rhyacophilla nigrocephala, and Hexatoma spp., were characterized by different feeding strategies. The ${\delta}^{13}C$ values for these species indicated that Glossosoma spp. graze upon periphyton; Chironominae and Stenelmis spp. mainly feed on benthic particulate organic matter, and R. nigrocephala and Hexatoma spp., which were identified as predators, feed upon Glossosoma, Stenelmis, and/or Chironominae spp. This suggests that the trophic position of consumers at each station may be determined by the trophic position of basal food sources in situ. For trophic pathways, the ${\delta}^{13}C$ values for both organic matter and aquatic insects tended to gradually decrease, whilst the ${\delta}^{15}N$ values increased from the upper reach to the lower reaches, relative to the physicochemical and geographical conditions. These parameters indirectly influence the flow of energy from organic matter to consumers within food web in an intermittent stream system.