• 제목/요약/키워드: Bending work

검색결과 623건 처리시간 0.028초

A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates

  • Remil, Aicha;Benrahou, Kouider Halim;Draiche, Kada;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.325-337
    • /
    • 2019
  • In the present article, cross ply laminated composite plates are considered and a simple sinusoidal shear deformation model is tested for analyzing their flexural, stability and dynamic behaviors. The model contains only four unknown variables that are five in the first order shear deformation theory (FSDT) or other higher order models. The in-plane kinematic utilizes undetermined integral terms to quantitatively express the shear deformation influence. In the proposed theory, the conditions of zero shear stress are respected at bottom and top faces of plates without considering the shear correction coefficient. Equations of motion according to the proposed formulation are deduced by employing the virtual work principle in its dynamic version. The analytical solution is determined via double trigonometric series proposed by Navier. The stresses, displacements, natural frequencies and critical buckling forces computed using present method are compared with other published data where a good agreement between results is demonstrated.

Experimental study of a pretensioned connection for modular buildings

  • Yu, Yujie;Chen, Zhihua;Chen, Aoyi
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.217-232
    • /
    • 2019
  • Modular steel buildings consist of prefabricated room-sized structural units that are manufactured offsite and installed onsite. The inter-module connections must fulfill the assembly construction requirements and soundly transfer the external loads. This work proposes an innovative assembled connection suitable for modular buildings with concrete-filled steel tube columns. The connection uses pretensioned strands and plugin bars to vertically connect the adjacent modular columns. The moment-transferring performance of this inter-module connection was studied through monotonic and cyclic loading tests. The results showed that because of the assembly construction, the connected sections were separated under lateral bending, and the prestressed inter-module connection performed as a weak semirigid connection. The moment strength at the early loading stage originated primarily from the contact bonding mechanism with the infilled concrete, and the postyield strength depended mainly on the tensioned strands. The connection displayed a self-centering-like behavior that the induced deformation was reversed during unloading. The energy dissipation originated primarily from frictional slipping of the plugin bars and steel strands. The moment transferring ability was closely related to the section dimension and the arrangements of the plugin bars and steel strands. A simplified strength calculation and evaluation method was also proposed, and the effectiveness was validated with the test data.

Studies on CFST column to steel beam joints using endplates and long bolts under central column removal

  • Gao, Shan;Yang, Bo;Guo, Lanhui;Xu, Man;Fu, Feng
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.161-172
    • /
    • 2022
  • In this paper, four specimens of CFST column joints with endplates and long bolts are tested in the scenario of progressive collapse. Flush endplate and extended endplate are both adopted in this study. The experimental results show that increasing the thickness of the endplate could improve the behavior of the joint, but delay the mobilization of catenary action. The thickness of the endplate should not be relatively thick in comparison to the diameter of the bolts, otherwise catenary action would not be mobilized or work effectively. Effective bending deformation of the endplate could help the formation and development of catenary action in the joints. The performance of flexural action in the joint would affect the formation of catenary action in the joint. Extra middle-row bolts set at the endplates and structural components set below the bottom beam flange should be used to enhance the robustness of joints. A special weld access hole between beam and endplate should be adopted to mitigate the chain damage potential of welds. It is suggested that the structural components of joints should be independent of each other to enhance the robustness of joints. Based on the component method, a formula calculating the stiffness coefficient of preloaded long bolts was proposed whose results matched well with the experimental results.

Effect of the composite patch beveling on the reduction of stresses in 2024-T3 Aluminum structure damaged and repaired by composite, hybrid patch repair

  • Belhoucine, A.;Madani, K.
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.17-30
    • /
    • 2022
  • The use of composite patches for the reduction of stresses at the level of the damaged zone in aeronautical structures has experienced rapid expansion given its advantages over conventional mechanical processes (riveting, bolting, etc.). Initially, The research axes in this field were aimed at choosing suitable mechanical properties for the composite and the adhesive, then to optimize the shape of the composite patch in order to ensure good load transfer and avoid having a debonding at the level of the edges essentially for the case of a repair by single side where the bending moment is present due to the non-symmetry of the structure. Our work falls within this context; the objective is to analyze by the finite element method the fracture behavior of a damaged plate repaired by composite patch. Stress reduction at the edge is accomplished by creating a variable angle chamfer on the composite patch. The effects of the crack length, the laminate sequence and the nature of the patch as well as the use of a hybrid patch were investigated. The results show clearly that a beveled patch reduces the stress concentrations in the damaged area and even at its edges. The hybrid patch also ensures good durability of the repair by optimizing its stacking sequence and the location of the different layers according to the fibers orientations.

초기 비틀림 각을 갖는 박벽 복합재료 보의 정적 거동 해석 (Structural Behavior of Thin-Walled, Pretwisted Composite Beams)

  • 박일주;홍단비;정성남
    • Composites Research
    • /
    • 제20권6호
    • /
    • pp.15-20
    • /
    • 2007
  • 본 연구에서는 혼합 보 이론을 이용하여 초기 비틀림 각을 갖는 박벽 복합재료 보에 대한 정적 거동 해석을 수행하였다. 보 해석 모델은 복합재료의 연계특성 및 박벽 두께효과, 그리고 비틀림 워핑을 고려하고 있다. 보의 인장-굽힘-비틀림 정적 거동에 대한 혼합적인 요소를 효과적으로 고려함과 동시에 보의 이론 전개를 위해 Reissner의 반보족에너지 함수를 도입하였다. 초기 비틀림 각의 도입에 따른 굽힘 및 비틀림 관련 워핑함수를 특별한 가설에 의존하지 않고 엄밀하게 유도하였다. 개발된 보 이론의 신뢰성을 제고하기 위한 일환으로 탄성적으로 연계된 복합재료 보에 대해 정적 구조해석을 수행하였으며, 해석 결과를 기존의 이론 및 유한요소 해석결과와 비교하여 그 타당성을 확보하였다.

터빈용 Cr-Mo-V강의 고온 환경변화에 따른 피로거동-고사이클 피로균열의 전파특성- (Fatigue behavior of Cr-Mo-V steel at high temperature for turbines -Propagation characteristics of high cycle fatigue crack-)

  • 송삼홍;강명수
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.69-76
    • /
    • 1997
  • The rotating bending fatigue tests were performed using the specimens taken from Cr-Mo-V steel, widely sued in thermal power plant turbines, at various temperatures such as room temperature, 300 .deg. C, 425 .deg. C and 550 .deg. C. The characteristics of fatigue crack propagation were examined and analyzed by using fracture mechanics parameter. The plastic replica method was also applied in order to measure the crack length on the basis of serial observation of fatigue crack propagation behavior on the defected specimen surface. The fatigue crack propagation behavior of Cr-Mo-V steel was investigated within the frame work of elastic-plastic fracture mechanics. The propagation law of fatigue crack is obtained uniquely by using the term .sigma. $^{n}$ sub a/where .sigma. $_{a}$ is the service stress, a is the crack length and n is a constant. The values of constant n are nearly equal to 2.48, 2.60 and 8.61 at room temperature, 300 .deg. C and 425 .deg. C.

  • PDF

Numerical investigations of structure-soil-structure interaction on footing forces due to adjacent building

  • Shrish Chandrawanshi;Vivek Garg
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.477-487
    • /
    • 2024
  • The interaction between multiple structures through the supporting soil media, known as structure-soil-structure interaction (SSSI), has become an increasingly important issue due to rapid urbanization. There is a need to investigate the effect of SSSI on the structural response of buildings compared to non-interaction analysis (NIA) and soil-structure interaction (SSI) analysis. In the present study, two identical 4-bay×4-bay, three-story RCC buildings are modeled adjacent to each other with a soil domain beneath it to investigate the effect of SSSI on the forces experienced by footings under gravity and seismic load cases. The ANSYS software is used for modeling various non-interaction and interaction models which work on the principle of FEM. The results indicate that in most of the footings, the SSSI effect causes a significant redistribution of forces compared to SSI and NIA under both gravity and seismic load cases. The maximum interaction effect is observed on the footings that are closer to the adjacent building. The axial force, shear force and bending moment values on these footings show that SSI causes a significant increase in these values compared to non-interaction analysis but the presence of adjacent building relieves these forces significantly.

Flexural performances of deep-deck plate slabs: Experimental and numerical approaches

  • Inwook Heo;Sun-Jin Han;Khaliunaa Darkhanbat;Seung-Ho Choi;Sung Bae Kim;Kang Su Kim
    • Steel and Composite Structures
    • /
    • 제52권3호
    • /
    • pp.313-325
    • /
    • 2024
  • This work presents experimental and numerical investigations on the flexural performances of composite deep-deck plate slabs. Seven deep-deck plate slab specimens with topping concrete were fabricated; the height of the topping slab as well as presence and type of shear connector were set as the main variables to perform bending experiments. The flexural behaviors of the specimens and composite behaviors of the deck plate and concrete were analyzed in detail. The contributions of the deck plate to the flexural stiffness and strength of the slab were identified through finite element (FE) analysis. FE analysis was carried out using the validated FE model by considering the varying bond strengths of the deck plates and concrete, thickness of the deck plate, and types and spacings of the shear connectors. Based on the results, the degree of composite of the deep-deck plate was examined, and a flexural strength equation for the composite deck plate slabs was proposed.

A Study for the Appropriateness of the Different Reference Points in the Analysis of Working Posture

  • Kim, Day-Sung;Kim, Chol-Hong
    • 대한인간공학회지
    • /
    • 제30권5호
    • /
    • pp.637-644
    • /
    • 2011
  • Objective & Background: When applying various evaluation tools that analyze work posture risk through observation, accurate measurement of body flexion angle is very important. Method: This study investigated differences and appropriateness of 5 different existing reference points commonly used in the analysis of the work posture. Twenty five ergonomist and trained professionals were participated in this study. A Same flexion angle was utilized for the evaluation of risk assessment of musculoskeletal disorders using five different reference points to investigate the degree of difference between them. To investigate how different the observers' preferred flexion angle measuring methods were compared to the ISO 11226 Reference Posture, a virtual body model was constructed using the Poser 6.0 program. Six types of body flexion postures were constructed, and since neck flexion differs according to body angle, five types of neck flexion postures were constructed with the trunk bending $20^{\circ}$ forward, making up a total of 30 virtual flexion postures. Results: Results showed that the observers used personally preferred reference points instead of reference points recommend in the evaluation tools. Also the results revealed the their seems to be 6 types of flexion angle for the trunk and 11 types of measurement methods for the neck flexion angle in the form of personally preferred reference points. The results showed that a mean difference of $14^{\circ}$($4{\sim}23^{\circ}$) occurred in the trunk, and a mean difference of $20^{\circ}$($-8{\sim}51^{\circ}$) occurred in the neck. To increase accuracy when using the 5 evaluation tools in combination, the ISO 11226 standards, observers' preferred flexion posture standards, and common flexion posture standards of the evaluation tools were compared with the reference points of the 5 evaluation tools. Results showed considerable variance in angle difference for each evaluation tool. Conclusion: According to the results of this study, considering the angle difference between the flexion angle reference points of the evaluation tool and the reference points selected by the observers, it is concluded that instead of personally preferred reference points, the standardized reference points to enhance the accuracy and the objectivity. Application: The result of this study can be used as reference guide to develop the standardized reference point in the future.

콘크리트 구조물 단면복구공사 보수재료 품질기준개선 (Revision of Repair Materials Performance Requirement for Concrete Structures)

  • 이일근;김기환;김홍삼;윤성환;김우석
    • 대한토목학회논문집
    • /
    • 제43권1호
    • /
    • pp.9-20
    • /
    • 2023
  • 고속도로 콘크리트 구조물은 제설제 사용량 증가로 구조물의 열화가 가속되고 있어 성능회복을 위해 단면복구공사를 실시하고 있다. 하지만, 보수공사 이후 보수부위에 균열, 들뜸 및 부착성능 저하 등의 재손상이 나타나고 있다. 본 연구에서는 먼저 해외 기준을 분석하였고, 공용 중인 콘크리트 구조물의 현장조사, 실내실험, 폐교량에 대한 시험시공을 통해 균열 방지 및 부착성능향상을 위해 강화된 기준을 제시하였다. 요구성능이 충족되는 재료는 모두 적용이 가능하도록 성능기반의 품질기준을 제시하였고, 재료별 상이한 시험방법도 일관성 있는 시험결과 분석을 위해 콘크리트 시험법으로 통일하여 제시하였다. 고려된 품질기준은 하중 저항을 위해 역학특성 분야로는 압축강도, 휨강도, 부착강도 기준을 마련하였고, 체적안정성을 위해 길이변화율, 균열저항성, 열팽창계수, 탄성계수를 기준을 마련하였다. 제설염해에 대한 저항성을 위해 내구성능 분야로는 염분침투저항성과 동결융해저항성 기준을 제시하였다. 본 연구에 의해 제시된 콘크리트 보수재료의 기준은 국내의 단면복구공사 품질향상에 기여할 것으로 기대된다.