• Title/Summary/Keyword: Bending wave

Search Result 232, Processing Time 0.023 seconds

Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

  • Chuang, Zhenju;Liu, Shewen;Lu, Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.367-375
    • /
    • 2020
  • This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.

Nonlinear Dynamic Analysis of Steel Lazy Wave Riser using Lumped Mass Line Model (집중질량 라인모델을 이용한 Steel Lazy Wave Riser의 비선형 동적 해석)

  • Oh, Seunghoon;Jung, Jae-Hwan;Park, Byeongwon;Kwon, Yong-Ju;Jung, Dongho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.400-410
    • /
    • 2019
  • In this study, the numerical code for the 3D nonlinear dynamic analysis of an SLWR (Steel Lazy Wave Riser) was developed using the lumped mass line model in a FORTRAN environment. Because the lumped mass line model is an explicit method, there is no matrix operation. Thus, the numerical algorithm is simple and fast. In the lumped mass line model, the equations of motion for the riser were derived by applying the various forces acting on each node of the line. The applied forces at the node of the riser consisted of the tension, shear force due to the bending moment, gravitational force, buoyancy force, riser/ground contact force, and hydrodynamic force based on the Morison equation. Time integration was carried out using a Runge-Kutta fourth-order method, which is known to be stable and accurate. To validate the accuracy of the developed numerical code, simulations using the commercial software OrcaFlex were carried out simultaneously and compared with the results of the developed numerical code. To understand the nonlinear dynamic characteristics of an SLWR, dynamic simulations of SLWRs excited at the hang-off point and of SLWRs in regular waves were carried out. From the results of these dynamic simulations, the displacements at the maximum bending moments at important points of the design, like the hang-off point, sagging point, hogging points, and touch-down point, were observed and analyzed.

Study on the Application of Microwave-heating System to Manufacturing Bent-wood Furniture(III) - Effect of wood moisture content on bending processing by microwave-heating - (국산재(國産材) 묘목가구(苗木家具) 제조(製造)를 위한 Microwave-heating system 활용(活用)에 관한 연구(硏究)(III) - 목재(木材) 함수율(含水率)이 microwave휨가공성에 미치는 영향(影響) -)

  • So, Won-Tek
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.502-508
    • /
    • 1997
  • Black locust(Robina pseudo-acacia L.) and hornbeam trees(Carpinus laxiflora BL.) are widely growing in Korea and have relatively good wood qualities. However, they have seldom been used as industrial materials. This study was carried out to investigate the effect of wood moisture content on microwave-bending processing. The bending processing of the both species are improved as the increase of wood moisture from 30% to green, and the maximum limit of wood moiture content is 50%. The minimum solid-bending radii of black locust and hornbeam green wood were 60mm and 40mm for micro-wave bending, respectively. In conclusion, the microwave-heated green wood showed very good bending processing properties for bent-wood furniture.

  • PDF

Propagation behaviors of guided waves in graphene platelet reinforced metal foam plates

  • Wubin Shan;Hao Zhong;Nannan Zhang;Guilin She
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.637-646
    • /
    • 2023
  • At present, the research on wave propagation in graphene platelet reinforced composite plates focuses on the propagation behavior of bulk waves, in which the effect of boundary condition is ignored, there is no literature report on propagation behaviors of guided waves in graphene platelet reinforced metal foams (GPLRMF) plates. In fact, wave propagation is affected by boundary conditions, so it is necessary to study the propagation characteristics of guided waves. The aim of this paper is to solve this problem. The effective performance of the material was calculated using the mixing law. Equations of motion of GPLRMF plate is derived by using Hamilton's principle. Then, the eigenvalue method is used to obtain the expressions of bending wave, shear wave and longitudinal wave, and the degradation verification is carried out. Finally, the effects of graphene platelets (GPLs) volume fraction, elastic foundation, porosity coefficient, GPLs distribution types and porosity distribution types on the dispersion relations are studied. We find that these factors play an important role in the propagation characteristics and phase velocity of guided waves.

The Practice of Bending Deflection using Non-destructive MOE of Glulam (비파괴 탄성계수를 이용한 집성재의 휨변형 예측)

  • Park, Jun-Chul;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • In the glulam beam deflection it is necessary to check the reliability of theory formula, because of wood anisotropy and wood qualities (knot, slop of grain). In this experiment, when bending stress occurred on glulam, practice deflection of glulam measuring with AICON DPA-Pro 3D system were compared with prediction deflection calculated as substituting MOE through non-destructive testing and static MOE through bending test in differential equation of deflection curve. MOE using ultrasonic wave tester of laminae, MOE using natural frequencies of longitudinal vibrations ($E_{cu}$, $E_{cf}$), MOE using ultrasonic wave tester of glulam ($E_{gu}$) and MOE using natural frequencies of longitudinal vibrations ($E_{gf}$) were substituted in this experiment. When practice deflection measured by 3D system was compared with prediction deflection calculated with differential equation of deflection curve, within proportional limit the ratio of practice deflection and prediction deflection was similar as 1.12 and 1.14, respectively. Deflection using ultrasonic wave tester was 0.89 and 0.95, Deflection using natural frequencies of longitudinal vibrations was 1.07 and 1.10. The results showed that prediction deflection calculated by substituting using non-destructive MOE of glulam having anisotropy in differential equation of deflection curve was agreed well with practice deflection.

Numerical Prediction of Slamming Impact Loads and Response on a Ship in Waves Considering Relative Vertical Velocity (상대수직속도를 고려한 파랑중 선박의 슬래밍 충격하중 및 응답 계산)

  • Choi, Mun-Gwan;Park, In-Kyu;Koo, WeonCheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.503-509
    • /
    • 2014
  • This paper describes the time-domain numerical method for prediction of slamming loads on a ship in waves using the strip theory. The slamming loads was calculated considering the relative vertical velocity between the instantaneous ship motion and wave elevation. For applying the slamming force on a ship section, the momentum slamming theory and the empirical formula-based bottom slamming force were used corresponding to the vertical location of wetted body surface. Using the developed method, the vertical bending moments, relative vertical velocities, and impact forces of S175 containership were compared in the time series for various section locations and wave conditions.

Development of FEA-based Metal Sphere Signal Map for Nuclear Power Plant Structure (유한요소해석 기반 원전 기계구조물 충격-질량지표 개발)

  • Moon, Seongin;Kang, To;Han, Soonwoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.38-47
    • /
    • 2018
  • For safe operation of nuclear power plants, a loose-part monitoring system (LPMS) is used to detect and locate loose-parts within the reactor coolant system, and to estimate their mass and damage potential. There are several methods to estimate mass, such as the center frequency method based on the Hertz's impact theory, a frequency ratio method and so on, but it is known that these methods cannot provide accurate information on impact response for identifying the impact source. Thanks to increasing computing power, finite element analysis (FEA) method recently become an available option to calculate reliably impact response behavior. In this paper, a finite element analysis model to simulate the propagation behavior of the bending wave, generated by a metal ball impact, is validated by performing a series of impact tests and the corresponding finite element analyses for flat plate and shell structures. Also, a FEA-based metal sphere signal map is developed, and then blind tests are performed to verify the map. This study provides an accurate simulation method for predicting the metal impact behavior and for building a metal sphere signal map, which can be used to estimate the mass of loose-parts on site in nuclear power plants.

Dynamic and structural responses of a submerged floating tunnel under extreme wave conditions

  • Jin, Chungkuk;Kim, MooHyun
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.413-433
    • /
    • 2017
  • The dynamic and structural responses of a 1000-m long circular submerged floating tunnel (SFT) with both ends fixed under survival irregular-wave excitations are investigated. The floater-mooring nonlinear and elastic coupled dynamics are modeled by a time-domain numerical simulation program, OrcaFlex. Two configurations of mooring lines i.e., vertical mooring (VM) and inclined mooring (IM), and four different buoyancy-weight ratios (BWRs) are selected to compare their global performances. The result of modal analysis is included to investigate the role of the respective natural frequencies and elastic modes. The effects of various submergence depths are also checked. The envelopes of the maximum/minimum horizontal and vertical responses, accelerations, mooring tensions, and shear forces/bending moments of the entire SFT along the longitudinal direction are obtained. In addition, at the mid-section, the time series and the corresponding spectra of those parameters are also presented and analyzed. The pros and cons of the two mooring shapes and high or low BWR values are systematically analyzed and discussed. It is demonstrated that the time-domain numerical simulation of the real system including nonlinear hydro-elastic dynamics coupled with nonlinear mooring dynamics is a good method to determine various design parameters.

Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Tounsi, Abdelouahed;Taj, Muhammad
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.431-442
    • /
    • 2019
  • Vibration analysis of carbon nanotubes (CNTs) is very essential field owing to their many promising applications in tiny instruments. In current study, the Eringen's nonlocal elasticity theory with clamped-clamped and clamped-free end conditions is utilized for the vibration analysis of armchair and zigzag SWCNTs. The Fourier method is utilized to solve the ordinary differential equation. The motion equation for this system is developed using a novel wave propagation method. Complex exponential functions have been used and the axial model depends on BCs that has been described at the edges of CNTs. The behavior of different nonlocal parameters is considered to find the vibrational frequency of SWCNTs. It is exhibited that the effect of frequencies against aspect ratio by varying the bending rigidity. It has been investigated that by increasing the nonlocal parameter decreases the frequencies and on increasing the aspect ratio increases the frequencies for both the tubes. To generate the fundamental natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since the percentage of error is negligible, the model has been concluded as valid.

Improved MudFork Penetration Test and its Application (개량된 머드포오크 관입시험 장치의 개발 및 적용)

  • Kim, Hak-Sung;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1365-1371
    • /
    • 2009
  • A new s-wave probe, called "MudFork", has been recently developed and is used in accurate measurements of shear wave velocities of soft soils. In previous researches, some instrumental defects of the probe have been reported. Bending deformation of probe is caused by small section modulus of blades, and open-ended bender elements are vulnerable to damage during penetration. Herein, we improved the MudFork to solve these problems. Field tests at Sinan, Jeollanamdo using the improved MudFork were conducted. Results from MPT are compared with the results from CPT.

  • PDF