• Title/Summary/Keyword: Bending trajectory

Search Result 15, Processing Time 0.02 seconds

Variation of Internal arch Trajectory with Type of Load in RC Beams (RC 보에서 하중형태에 따른 내부아치궤적 변화에 대한 연구)

  • Oh, Se-Wang;Park, Dae-Sung;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.483-488
    • /
    • 2001
  • The RC beams subjected to bending and shear are an important substructure. After flexural cracking, the internal stress state in the beam could not be explained by the classical beam theory. In this study the internal force state factor is introduced to explain the stress state change in the RC beams. The internal force state factor of uniform load was expanded by superposition method using infernal force state factor of point load. As the load types change, the operator that would be calculated the internal force state factor was proposed.

  • PDF

Trajectory of Elliptical Displacement of L1-B4 Type Linear Ultrasonic Motor using Multilayer Piezoelectric Actuator (적층형 압전 액츄에이터를 이용한 L1-B4형 선형 초음파 리니어 모터의 타원변위궤적)

  • Lee, Kab-Soo;Yoo, Ju-Hyun;Hwang, Eun-Sang;Park, Durk-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.49-52
    • /
    • 2008
  • In this study, multilayer structured ultrasonic linear motor was simulated using Atila for investigating its optimum driving conditions. The ultrasonic linear motors mainly consist of an ultrasonic vibrator to generate elliptical displacement. The ultrasonic linear motor simulated in this paper was the use of the 1st longitudinal(Ll) and 4th bending vibrations (B4). Whit the increase of the number of piezoelectric actuator layers, displacement of node was increased. Maximum total displacement of node was about $3,91{\mu}m$ at the 13 layered ultrasonic motor under 5 V.

Dynamic analysis of an elastic shaft with consideration about Journal bearing (압축기의 Bearing 윤활을 고려한 탄성체 Shaft의 동적 거동 해석)

  • Lee, Yun-gon;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.768-770
    • /
    • 2014
  • A shaft of a reciprocating compressor receives bending force by piston, which makes movement of the shaft. The movement of the shaft affects durability and becomes a source of noise. In this paper, a cylinder is modeled by considering motion of a suction and discharge valve. The journal bearing is modeled by Bernoulli's equation. The trajectory of shaft which is considered cylinder and journal bearing can be calculated by finite element method. It will help a design of shaft to increase durability and reduce noise.

  • PDF

The Selective p-Distribution for Adaptive Refinement of L-Shaped Plates Subiected to Bending (휨을 받는 L-형 평판의 적응적 세분화를 위한 선택적 p-분배)

  • Woo, Kwang-Sung;Jo, Jun-Hyung;Lee, Seung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.533-541
    • /
    • 2007
  • The Zienkiewicz-Zhu(Z/Z) error estimate is slightly modified for the hierarchical p-refinement, and is then applied to L-shaped plates subjected to bending to demonstrate its effectiveness. An adaptive procedure in finite element analysis is presented by p-refinement of meshes in conjunction with a posteriori error estimator that is based on the superconvergent patch recovery(SPR) technique. The modified Z/Z error estimate p-refinement is different from the conventional approach because the high order shape functions based on integrals of Legendre polynomials are used to interpolate displacements within an element, on the other hand, the same order of basis function based on Pascal's triangle tree is also used to interpolate recovered stresses. The least-square method is used to fit a polynomial to the stresses computed at the sampling points. The strategy of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed such that a particular element has to be refined automatically to obtain an acceptable level of accuracy by increasing p-levels non-uniformly or selectively. It is noted that the error decreases rapidly with an increase in the number of degrees of freedom and the sequences of p-distributions obtained by the proposed error indicator closely follow the optimal trajectory.

Analysis of vibration characterization of a multi-stage planetary gear transmission system containing faults

  • Hao Dong;Yue Bi;Bing-Xing Ren;Zhen-Bin Liu;Yue, Li
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.389-403
    • /
    • 2023
  • In order to explore the influence of tooth root cracks on the dynamic characteristics of multi-stage planetary gear transmission systems, a concentrated parameter method was used to construct a nonlinear dynamic model of the system with 30-DOF in bending and torsion, taking into account factors such as crack depth, length, angle, error, time-varying meshing stiffness (TVMS), and damping. In the model, the energy method was used to establish a TVMS model with cracks, and the influence of cracks on the TVMS of the system was studied. By using the Runge- Kutta method to calculate the differential equations of system dynamics, a series of system vibration diagrams containing cracks were obtained, and the influence of different crack parameters on the vibration of the system was analyzed. And vibration testing experiments were conducted on the system with planetary gear cracks. The results show that when the gear contains cracks, the TVMS of the system will decrease, and as the cracks intensify, the TVMS will decrease. When cracks appear on the II-stage planetary gear, the system will experience impact effects with intervals of rotation cycles of the II-stage planetary gear. There will be obvious sidebands near the meshing frequency doubling, and the vibration trajectory of the gear will also become disordered. These situations will become more and more obvious as the degree of cracks intensifies. Through experiments, the theoretical results are in good agreement with experimental results, verifying the correctness of the theoretical model. This provides a theoretical basis for fault diagnosis and reliability research of the system.