• 제목/요약/키워드: Bending stress

검색결과 1,809건 처리시간 0.03초

액체질소 중에서 기계적 응력에 따른 mini-model 케이블의 전기적 특성 (The Electrical Properties of Mini-model Cable under mechanical stress in Liquid Nitrogen)

  • 김영석;곽동순;한철수;김해종;성기철;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권1호
    • /
    • pp.22-27
    • /
    • 2004
  • It is important to mechanical properties of dielectric paper and cable to optimum electrical insulation design of HTS cable, because the cable has experience of mechanical stress, such as tensile stress, bending stress. Also, it is operated at cryogenic temperature. From the results, it was observed that the tensile strength of PPLP in liquid nitrogen was high more than that of air, but tensile strain decrease sharply. According as tensile strength increases, the breakdown stress of PPLP in liquid nitrogen is decreased. Because PPLP was deteriorated by microcrack and tensile strain. According as bending radius multiple is decrease, the ac and impulse breakdown stress of mini-model cable is sharply decreased.

이종 접합재의 굽힘 및 인장강도에 미치는 시험편 형상의 효과 (Effect of Specimen Geometry on Bending and Tensile Strength of Material Used in Dissimilar Joints)

  • 허장욱
    • 대한기계학회논문집A
    • /
    • 제34권3호
    • /
    • pp.341-346
    • /
    • 2010
  • 이종 접합재($\beta-Si_3N_4/S45C$)의 굽힘강도와 인장강도에 미치는 시험편 형상의 영향을 정량적으로 평가하였다. 평균 굽힘강도와 평균 인장강도는 원형단면 시험편이 4각형 단면 시험편보다 약간 높았다. 또한, 초음파(AE)를 이용하여 균열발생응력을 성공적으로 측정할 수 있었으며, 균열발생응력은 굽힘강도의 60~80% 이었다. 아울러, 세라믹측 접합계면 근처의 잔류응력 측정을 굽힘강도 시험전에 X선 회절법에 의해 실시하였으며, 굽힘강도와 균열발생응력은 잔류응력 증가와 더불어 감소하였다. 마지막으로 인장시험에서 굽힘변형률 성분의 영향을 평가하였으며, 인장강도는 굽힘변형률 성분의 증가와 더불어 감소하고 굽힘강도의 약 80%에 해당되었다.

복강경수술기구의 벤딩메커니즘 해석 및 벤딩커플러 최적설계 (Bending Mechanism Analysis and Bending Coupler Optimal Design for Laparoscopic Surgical Instrument)

  • 황달연;문대환;최승욱;원종석
    • 한국정밀공학회지
    • /
    • 제30권4호
    • /
    • pp.434-441
    • /
    • 2013
  • Bending motion has been used in the surgical instruments with bending structures and tendon mechanisms. A simplified bending angle amplification ratio between the proximal and distal bending joint was derived in this article. The bending structure of disk and rib in the proximal joint was analyzed based on finite element method with an emphasis on the circumferential uniformity of bending stiffness. Regarding the distal joint, optimal design and sensitivity analysis was done with four design variables of outer and inner diameter, rib height and rib width while maximizing the deformation under the stress distribution below the yield stress. Outer diameter and rib width are most critical to maximum deformation as the outer diameter and inner diameters are so to maximum equivalent stress.

深孔 非貫通노치材의 疲勞크랙 傳播擧動에 관한 硏究 (Behavior of fatigue crack propagation for the deep non-through radial holed notch specimens)

  • 송삼홍;원시태
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1327-1334
    • /
    • 1988
  • 본 연구에서는 회전굽힘응력하에서 비관통노치를 갖는 재료의 피로거동을 분 석하기 위하여 우선 시험편의 반지름에 해당한 심공노치를 갖는 시험편을 준비하고 이 시험편이 고, 중간, 저응력을 받는경우 작용응력의 대소에 의한 표면 및 내부크랙전파 특성과 함께 크랙면형상변화 관계를 검토하였다.

광탄성법(光彈性法)에 의한 로터리 경운날의 파괴요인(破壞要因)에 대한 해석(解析) -정하중(靜荷重)에 의한 응력집중(應力集中)- (Analysis of the Breaking Factor of Rotary Blade by Photo elastic Method -A Stress Concentration by Static Load-)

  • 최상인;김진현;김창수;김재열
    • Journal of Biosystems Engineering
    • /
    • 제15권3호
    • /
    • pp.177-185
    • /
    • 1990
  • The break of rotary blade is occured from a stress concentration of the inside of blade by the outside impulsive load. In order to examine its inside stress and stress concentration of rotary blade, a epoxy plate which is suitable to applicate by photoelastic system is used to experiment. These results are summarized as follow. 1. Refer to the existence of bolt hole and a size of its of rotary blade, a stress concentration which cause the break of rotary blade is not exposed. 2. It is expected to be break to section of hold of rotary blade and the break of this is due to that there are concentrated by shearing force, bending moment and bending stress. 3. When the crack which caused from processing are set up to any location, the stress concentration taken to the creak point. 4. Without regard to the location of the reaction points of rotary blade, the bending stress which is greated than the bending moment is occured within about 6 em toward the center line of bolt hole and it was possible to break that section.

  • PDF

Shear stresses below the rectangular foundations subjected to biaxial bending

  • Dagdeviren, Ugur
    • Geomechanics and Engineering
    • /
    • 제10권2호
    • /
    • pp.189-205
    • /
    • 2016
  • Soils are subjected to additional stresses due to the loads transferred by the foundations of the buildings. The distribution of stress in soil has great importance in geotechnical engineering projects such as stress, settlement and liquefaction analyses. The purpose of this study is to examine the shear stresses on horizontal plane below the rectangular foundations subjected to biaxial bending on an elastic soil. In this study, closed-form analytical solutions for shear stresses in x and y directions were obtained from Boussinesq's stress equations. The expressions of analytical solutions were simplified by defining the shear stress influence values ($I_1$, $I_2$, $I_3$), and solution charts were presented for obtaining these values. For some special loading conditions, the expressions for shear stresses in the soil below the corners of a rectangular foundation were also given. In addition, a computer program was developed to calculate the shear stress increment at any point below the rectangular foundations. A numerical example for illustrating the use of the presented solution charts was given and, finally, shear stress isobars were obtained for the same example by a developed computer program. The shear stress expressions obtained in this work can be used to determine monotonic and cyclic behavior of soils below rectangular foundations subjected to biaxial bending.

Evaluation Method of Hairstyling Materials and its Application to Cosmetic Preparations

  • Abe, Hidetoshi;Iida, Ichiro;Someya, Takao
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.1-12
    • /
    • 2003
  • Instead of sensory evaluation, we designed an evaluation method of the setting function of hairstyling products, based on an original theory focusing on changes in bending stress observed when a load with continuous bending is applied to human hair. Specifically, we developed a device to measure bending stress to quickly and objectively evaluate the condition of human hair, particularly its dynamic properties such as the setting function, following the application of hairstyling products. This device generates a load with continuous bending while applying a pendulum motion to a hair tress, one end of which is anchored. The setting function and holding power of resins of various molecular weight and ionic properties were evaluated using this device. The results demonstrated a close correlation with those obtained by experts' sensory evaluation. The evaluation results of bending stress and holding rate confirmed that the combined use of two different resins could improve the function of setting preparations. Evaluation using this device was able to substitute for sensory evaluation, and offers quick objective evaluation and detection of changes in the holding power of hairstyling products over time. We conclude that evaluation using this device is a promising new method.

  • PDF

선박 해양구조물 파이프 루프 곡선부의 응력 해석 (Stress Analysis of Curved Portions of Pipe Loops Used in Ships and Offshore Structures)

  • 박치모;배병일
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.52-57
    • /
    • 2011
  • Most ships and offshore structures are equipped with a variety of pipes, which inevitably contain curved portions. While it has been a usual practice to conduct bending stress analyses of these curved pipes using the straight-beam theory, this paper adopts two different types of finite elements, straight-beam elements and two-dimensional shell elements, for finite element analyses of a variety of curved pipes. It then compares the analysis results for two different types of elements to determine correction factors, which can be used to transform the bending displacements and bending stresses obtained by straight-beam elements to those obtainable by two-dimensional shell elements. The paper ends with a practical suggestion on how to efficiently use these correction factors to estimate the combined axial and normal stresses in a curved portion of a pipe.

전열관의 굽힘 및 확관접합 잔류응력 (Residual Stress in U-Bending Deformations and Expansion Joints of Heat Exchanger Tubes)

  • 장진성;배강국;김우곤;김선재;국일현;김성청
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.279-289
    • /
    • 2000
  • Residual stress induced in U-bending and tube-to-tubesheet joint processes of PWR's row-1 heat exchanger tube was measured by X-ray method and Hole-Drilling Method(HDM). Compressive residual stresses(-) at the extrados surface were induced in U-bending, and its maximum value reached -319 MPa in axial direction at the position of $\psi$ = $0^{\circ}$. Tensile residual stresses(+) of $\sigma_{zz}$ = 45 MPa and $\sigma_{\theta\theta}$ = 25 MPa were introduced in the intrados surface at the position of $\psi$ = $0^{\circ}$. Maximum tensile residual stress of 170 MPa was measured at the flank side at the position of $\psi$ = $90^{\circ}$, i.e., at apex region. It was observed that higher stress gradient was generated at the irregular transition regions (ITR). The trend of residual stress induced by U bending process of the tubes was found to be related with the change of ovality. The residual stress induced by the explosive joint method was found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the transition region (TR), and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction.