• Title/Summary/Keyword: Bending property

Search Result 404, Processing Time 0.028 seconds

The Piezoelectric Degradation and Mechanical Properties in PZT Ceramics with $MnO_2$ Addition ($MnO_2$를 첨가한 PZT 세라믹스의 압전열화 및 기계적 특성)

  • 김종범;최성룡;윤여범;태원필;김송희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.257-264
    • /
    • 1997
  • The aim of this study was to investigate the degradation of piezoelectric properties with compressive cy-clic loading, the change in bending strength before and after poling treatment and fracture strength in MPB depending on the amount of MnO2 addition. The MPB with 0.25 wt.% MnO2 showed the best resistance against the piezoelectric degradation with compressive cyclic loading. Bending strength increased when pol-ing and loading directions are parallel, however decreased when poling and loading directions are per-pendicular each other. Because, during poling treatment, compressive residual stress is generated in the pol-ing direction but tensile residual stress in the perpendicular direction to poling direction.

  • PDF

Flexural Characteristics of High Performance Fiber Reinforced Cement Composites used in Hybrid Synthetic Fibers (하이브리드 합성섬유를 이용한 고인성 섬유보강 복합체의 휨특성)

  • Han Byung Chan;Jeon Esther;Park Wan-Shin;Lee Young-Seak;Hiroshi Fukuyama;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.734-737
    • /
    • 2004
  • The synthetic fibers such as polypropylene(PP) and polyvilyl-alcohol(PVA) fiber are poised as a low cost alternative for reinforcement in structural applications. It has been reported that synthetic fiber in cement composites can control restrained tensile stresses and cracks and increase toughness, resistance to impact, corrosion, fatigue and durability. High performance fiber reinforced cementitious composite(HPFRCCs) shows ultra high ductile behavior in the hardened state, because of the fiber bridging properties. Therefore, a variety of experiments have being performed to access the performance of HPFRCCs recently. The research emphasis is on the flexural behavior of HPFRCCs made in synthetic fibers, and how this affects the composite property, and ultimately its strain-hardening performance. Three-point bending tests on HPFECCs are carried out. As the result of the bending tests, HPFRCCs showed high flexural strength and ductility. HPFRCCs made in PVA or Hybrid fiber were, also, superior to PP of singleness. On the other hand, effect of sand volume fraction on HPFRCCs made in PP was insignificant.

  • PDF

Mechanical and Magnetic Properties of YBCO Superconductor with Bi/CNT Composite and Resin/CNT Impregnation (Bi/CNT 화합물과 Resin/CNT를 보강한 YBCO 초전도체의 기계적, 자기적 특성 변화)

  • Oh, W.S.;Jang, G.E.;Han, Y.H.;Sung, T.H.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.107-110
    • /
    • 2007
  • Bi/CNT composite and resin/CNT were chosen to improve the mechanical properties of $YBa_2Cu_3O_7$(YBCO) superconductor. In order to elucidate the effects of Bi/CNT composite and resin/CNT in YBCO superconductors, melt texture superconductor were impregnated by mixed compound of Bi and CNT into the artificial holes parallel to the c-axis, which were drilled on the YBCO superconductor. Various amount of Bi/CNT and resin/CNT were impregnated to YBCO superconductor with different holes diameters. Typical artificial holes diameters were 0.5, 0.7, and 1.0 mm respectively. Result of three-point bending test measurement, the bending strength with resin/CNT impregnation was improved up to 59.64 MPa as compared with 50.79 MPa of resin/CNT free bulk. Resin/CNT impregnation has been found to be one of the effective ways in improving the mechanical properties of bulk superconductor.

  • PDF

Relative static and dynamic performances of composite conoidal shell roofs

  • Bakshi, Kaustav;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.379-397
    • /
    • 2013
  • Conoidal shells are doubly curved stiff surfaces which are easy to cast and fabricate due to their singly ruled property. Application of laminated composites in fabrication of conoidal shells reduces gravity forces and mass induced forces compared to the isotropic constructions due to the high strength to weight ratio of the material. These light weight shells are preferred in the industry to cover large column free open spaces. To ensure design reliability under service conditions, detailed knowledge about different behavioral aspects of conoidal shell is necessary. Hence, in this paper, static bending, free and forced vibration responses of composite conoidal shells are studied. Lagrange's equation of motion is used in conjunction with Hamilton's principle to derive governing equations of the shell. A finite element code using eight noded curved quadratic isoparametric elements is developed to get the solutions. Uniformly distributed load for static bending analysis and three different load time histories for solution of forced vibration problems are considered. Eight different stacking sequences of graphite-epoxy composite and two different boundary conditions are taken up in the present study. The study shows that relative performances of different shell combinations in terms of static behaviour cannot provide an idea about how they will relatively behave under dynamic loads and also the fact that the points of occurrence of maximum static and dynamic displacement may not be same on a shell surface.

Thermoelectric Properties of p-type 25% $Bi_{2}Te_{3}+75%Sb_{2}Te_{3}$ Materials Prepared by Rapid Solidification Process and Hot Pressing (급속응고기술에 의한 p-type 25% $Bi_{2}Te_{3}+75% Sb_{2}Te_{3}$ 열간압축제의 열전특성)

  • 김익수
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.246-252
    • /
    • 1996
  • $Bi_{2}Te_{3}-Sb_{2}Te_{3}$, $Bi_{2}Te_{3}-Bi_{2}Se_{3}$ solid solutions are of great interest as materials for thermoelectric energy conversion. One of the key technologies to ensure the efficiency of thermoelectric device is to obtain chemically homogeneous solid solutions. In this work, the new process with rapid solidification followed by hot pressing was investigated to produce homogeneous thermoelectric materials. Characteristics of the materials were examined with XRD, SEM, EPMA-line scan and bending test. Property variations of the materials were investigated as a function of variables, such as excess Te quantity and hot pressing temperature. Quenched ribbons are very brittle and consisted of homogeneous $Bi_{2}Te_{3}$, $Sb_{2}Te_{3}$ solid solutions. When the process parameters were optimized, the maximum figure of merit was 3.073$\times$$10^{-3}K^{-4}$. The bending strength of the material, hot pressed at 45$0^{\circ}C$, was 5.87 kgf/${mm}^2$.

  • PDF

Improvement of Mchanical Property of Indium-tin-oxide Films on Polymer Substrates by using Organic Buffer Layer

  • Park, Sung-Kyu;Han, Jeong-In;Moon, Dae-Gyu;Kim, Won-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.2
    • /
    • pp.32-37
    • /
    • 2002
  • This paper gives the basic mechanical properties of indium-tin-oxide (ITO) films on polymer substrates which are exposed to externally and thermally induced bending force. By using modified Storney formula including triple layer structure and bulge test measuring the conductive changes of patterned ITO islands as a function of bending curvature, the mechanical stability of ITO films on polymer substrates was intensively investigated. The numerical analyses and experimental results show thermally and externally induced mechanical stresses in the films are responsible for the difference of thermal expansion between the ITO film and the substrate, and leer substrate material and its thickness, respectively. Therefore, a gradually ramped heating process and an organic buffer layer were employed to improve the mechanical stability, and then, the effects of the buffer layer were also quantified in terms of conductivity-strain variations. As a result, it is uncovered that a buffer layer is also a critical factor determining the magnitude of mechanical stress and the layer with the Young's modulus lower than a specific value can contribute to relieving the mechanical stress of the films.

Viscoelastic Bending Behaviors of Unidirectional Fiber Reinforced Composite C-rings with Asymmetric Material Properties (비대칭물성을 고려한 일축방향 섬유강화 복합재료 C링의 점탄성적 거동해석)

  • 이명규;이창주;박종현;정관수;김준경;강태진
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.18-30
    • /
    • 2000
  • In order to optimize the design of unidirectional fiber reinforced composite C-rings, a viscoelastic load relaxation behavior was analyzed under a point load. Initially, the deflection and bending stiffness were calculated based on the elastic beam theory and the viscoelastic relaxation and creep behaviors were derived from the elastic solution using the correspondence theorem. Besides the orthotropic mechanical properties of the composite, asymmetric mechanical property due to the different tensile and compressive properties were also considered. Except the deviation affected by the relatively large thickness of the specimen compared to the radius, the calculated relaxation showed good agreement with the experimental result.

  • PDF

The Effects of Draw Ratio of Worsted Yarn on the Mechanical Properties of Knitted Fabrics (소모연신사의 연신비가 니트의 역학적 성질에 미치는 영향)

  • Han, Won-Hee;Kim, Seung-Jin
    • Textile Coloration and Finishing
    • /
    • v.22 no.3
    • /
    • pp.272-281
    • /
    • 2010
  • This paper surveys the effects of drawing conditions of the worsted staple yarns on the mechanical properties of the knitted fabrics for highly aesthetical fabrics. The drawn worsted yarns were made on the yarn drawing system with various draw ratios under the fixed conditions of setting time, reduction and oxidation. The knitted fabric specimens were prepared on the 16 gauge circular knitting machine using these drawn worsted staple yarns. The tensile, shear, bending, compression and surface properties of these knitted fabrics were measured by KES-FB-AUTO-A system and also discussed with the drawing conditions. The tensile linearity, shear stiffness and bending rigidity decreased with increasing draw ratio. Any changes were not shown on the compressional properties with drawing conditions. But the friction coefficient of the knitted fabric on the course direction increased with increasing draw ratio, while there was no change according to the draw ratio on the wale direction.

Behaviors of Microstructure and Properties in API X70 SAW Weld (API X70 후육강관 SAW용접부 미세조직 및 인성 거동에 대한 연구)

  • Uhm Sang-Ho;Kim Sung-Wook;Kim Jong-Hyun;Lee Chang-Hee;Kim Gwang-Soo
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.66-74
    • /
    • 2005
  • API(American Petroleum Institute) steel, as a line pipe material, requires the enhanced mechanical and chemical properties with the environmental severity. Especially, the weld part(weld metal and heat affected zone) is an important region for the safety. However, the study for the behavior of microstructure and toughness in multi-pass welding is seldom. In this study, the relationship between the microstructure and toughness of welds with several welding, bending and heat-treatment conditions was examined. In particular, HIC property in the weld metal was evaluated. The microstructure and toughness in multi-passed HAZ seemed to be determined by the final welding thermal cycle and the low toughness was attributed to the MA constituents formed in the intercritically reheated region. The weld metal showed very low toughness and it was not improved by the change in bending and heat treatment conditions. Additionally, the cracks are observed in the weld metal. from these results, it was found that the choice of welding wire/flux is very important.

A Study on the Springback Characteristics and Bracket Formabilities Enhancement of Aluminum Alloy Sheets for Autobody Application (차체용 알루미늄합금 판재의 스프링백 특성과 브래킷 성형성 향상에 관한 연구)

  • 최문일;강성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.64-76
    • /
    • 1997
  • This paper deals with development of brackets by using aluminum alloy sheets which is indispensable for weight reduction of autobody. The press formability of aluminum alloy sheet is estimated by means of tensile test, V bending test, sample manufacturing test and photograph of microstructure. The results show that the elongation, strength, work hardening exponent, plastic anisotropy coefficient of Al 6***series are better than those of Al 5***series, but for general press formability, Al 5***series are better than Al 6***series due to lower yield strength. Since most of mechanical properties of aluminum sheet are generally inferior to those of cold-rolled steel sheet, shape fixability and press formability of aluminum sheet are very poor. For making components of autobody by use of die for steel sheet application, it is essential that die should be nodified for least bending and stretching. With the modified die for aluminum, it could be possible to make brackets, the component of autobody. Microstructure of Al 5***series has fine grain and small the 2nd phase and that of Al 6***series has relatively coarse grain. Therefore, it seems that fine grain and small the 2nd phase of Al 5***series is one of the factor of lower yield strength, resistance to stamping work, formation of Luder's line.

  • PDF