• Title/Summary/Keyword: Bending process

Search Result 1,271, Processing Time 0.032 seconds

A Study on the Deformation of O.D 245mm Off-shore Plant Pipe by Induction Bending (고주파 벤딩을 통한 직경 245mm 해양플랜트 배관의 변형에 관한 연구)

  • Joo, Yi-Hwan;Kim, Namyong;Kim, Dong-Seon;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.72-78
    • /
    • 2022
  • Bending using high-frequency induction heating is used to bend pipes and sections, and is currently widely applied in industrial fields such as power generation facilities, ships, onshore plants, and offshore plants. The purpose of this study is to study the manufacturing process and design technology of high-frequency bending of pipe to make the best pipe design arrangement. Although various studies are being conducted in the field of high-frequency bending, more research is needed on high-frequency bending of pipes for ship building and offshore plants. The purpose of this study is to review the feasibility of production design using 3D model tool of S3D and AM(PDMS), and to review and improve bending thickness reduction, reduction rate, and roundness.

Effect of Grain Angle on Bending Properties of Pinus densiflora (소나무재의 휨 가공성에 미치는 섬유경사각의 영향)

  • Kim, Jung-Hwan;Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.118-125
    • /
    • 2001
  • In this study, it was examined the characteristics of bending property of red pine(Pinus densiflora S, et Z.) related to slope of grain. At first, we have investigated the characteristics of wood species for bending property. At second, it was examined the relationships between grain angle and its related bending property. Specimens were made following to grain angle $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$, respectively. Dimension of wood materials was $10mm(T){\times}20mm(R){\times}350mm(L)$. Microwave irradiation time for bending process was 30, 60, 90, 120 seconds. The result of this study were as follows ; 1. Grain angle of wood was closely related to Young's modulus on bending process. In the process of bending with various grain angle, wood bending was easily proceed on the high grain angle range. 2. However, the strength of bent wood was very weak when the grain angle was high. Therefore, it was considered suitable grain angle for bending was existed. 3. The characteristics of wood properties for wood bending were very different among wood species.

  • PDF

Experimental Investigation of the Springback Characteristics of Tailor-Welded Strips in U-bending (용접판재의 U-벤딩시 스프링백 특성에 관한 실험적 연구)

  • 신장모;장성호;허영무;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.48-53
    • /
    • 2002
  • Sheet or plate bending is one of the most important industrial metal forming processes. And considerable attention has been focused on gaining a better understanding of many of bending characteristics. One of defaults in bending process is the springback. In this study, the springback characteristics of tailor-welded strips in U-bending process was investigated. Furthermore, not only the relationships between the springback and the process variables such as the geometry of the tools and thickness combination of workpiece but also the heat effect which affects the springback due to welding process was experimentally considered. First, tailor-welded strips are joined by the laser welding process and consisted of two types of thickness combinations of the SCPI sheet, 0.8t${\times}$1.2t and 0.8${\times}$1.6t to investigate the effect of different thickness combination on the springback. Secondly, two different directionally welded strips, one was welded along the centerline of the strip-width and the other was along the centerline of strip-length, were adopted to compare the effects of the location of weld line on the springback. And three punch profile radii of 3, 9, and 15 m were used. Some cases of the experimental results were simulated by using a commercial FEM code, PAM-STAMP to compare the experimental results to the analytical ones.

  • PDF

Finite Element Analysis on the Springback in the Forging-Bending of Metal Micro-Wire (금속 마이크로 와이어의 단조-굽힘 성형에서 스프링백에 관한 해석적 연구)

  • Kang, J.J.;Hong, S.K.;Jeon, B.H.;Pyo, C.R.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.649-656
    • /
    • 2008
  • Springback is one of factors affecting precision in metal forming. Its effect is particularly prominent in bending process. In this study, bending and forging process are used in order to manufacture a micro spring with two bending region from $60{\mu}m$ diameter wire. Springback in the process lowers the precision of the micro spring. Overbending for springback compensation has wide usage in a general way. However, this method requires repeated modifications of press dies until the tolerance is allowable, which causes that production cost and time increase. In this paper, we analyzed the mechanism of springback in the forming process of the micro spring using finite element method. In addition, a simple method to control springback without modifying dies was proposed by performing numerical analysis with various parameters.

Research on Improved Formability of High-Strength Steel Mounting Brackets and Springback Prediction (고강도강 마운팅브라켓의 성형성 향상 및 스프링백 예측에 관한 연구)

  • Lim, Kyu-seong;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.14-22
    • /
    • 2022
  • To reduce the weight of the car and ensure the safety of the driver while driving, the existing 440 MPa-class mounting bracket was treated at 590MPa to improve collision safety and secure the weight of the vehicle body. The following conclusions were drawn from the tensile test, forming analysis, and springback prediction. In the formability and springback analyses using FLD, it could be confirmed that bending was an essential process because the formability and flatness were much better when bending was added than when bending was not applied. Based on the research results, it was deduced that the mold design was necessary so that the molding was carried out at a strain rate of 20% or less for stable molding.

Progressive Process Design of Integrated Part for Mobile Phone (모바일 폰용 일체형 부품의 프로그레시브 성형공정 설계)

  • Chang, M.J.;Kim, G.H.;Lee, C.J.;Kim, B.M.;Lee, S.B.;Ko, D.C.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.110-117
    • /
    • 2011
  • The purpose of this work is to develop of a press forming process for mobile phone battery cover as an alternative to the current manufacturing process by laser welding. This press forming process consists of a combination of bending, side pressing and side bending operations. The dimensional error for each process was investigated by finite element(FE) analysis and the Taguchi optimization method. The spreading of the cover width in the side pressing process was adjusted by modifying the blank shape with a notch. The over-bending method was adopted to compensate the spring-back which occurs after bending. Forming experiments were performed to verify the reliability of the developed press forming process. In addition, the strength of the product was evaluated to verify the suitability of the battery cover manufactured with this new press forming process. The results of the forming experiments indicate that the dimensional accuracy of the battery cover is within the required tolerance. The strength of the battery cover was evaluated to 547N which is larger than required strength of 400N.

Finite Element Analysis and Its Verification of Springback in L-bending to Evaluate the Effect of Process Design Parameters (L-벤딩에서 공정 설계변수가 스프링백에 미치는 영향의 평가를 위한 유한요소해석 및 검증)

  • Cho, M.J.;Kim, S.J.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.275-283
    • /
    • 2021
  • A parametric study was conducted on the effects of five fundamental design parameters on springback, including die clearance, step height, step width, punch radius, and taper relief in an L-bending process, controlled by the compression force. The experiment was also conducted to verify the usefulness of the parametric study procedure for process design, as well as the finite element predictions. The elastoplastic finite element method was utilized. The L-bending process of the york product, which is a key part of the breaker mechanism, was employed. The deformation of the material was assumed to be due to plane strain. Five samples of each design parameter were selected based on experiences in terms of process design. The finite element predictions were analyzed in detail to show a shortcut towards the process design improvement which can replace the traditional process design procedure relying on trial-and-errors. The improved process design was verified to meet all the requirements and the predictions and experiments were in good agreement.

A Simplified Approach for Predicting Springback in U-Draw Bending of Sheet Metals (U 드로오 벤딩에서의 스프링백 예측을 위한 이론적 단순화)

  • 장성호;허영무;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.125-131
    • /
    • 2003
  • The U-draw bending operation is known as a representative test method for springback evaluation of sheet metals since the sheet in U-draw bending operation undergoes stretching, bending and unbending deformations occurred at read stamping process. In this study, a simplified approach was proposed for predicting springback and side-wall curls in U-draw bending operations, using moment-curvature relationships derived for sheets undergoing stretching, bending and unbending deformation.

  • PDF

Estimation on Formability of ]Knife Press Forming Process for the Thick Pipes (Knife Press Forming 공정의 후육관 성형성 예측)

  • Park, J.W.;Noh, H.G.;Ku, T.W.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.319-322
    • /
    • 2009
  • Roll bending process has been used for manufacturing the pipes. However, it is not suitable process for the thick pipes. Knife press forming is acceptable process for the thick pipes. Recently, the knife press forming process using brake bending press have been performed. In this study, the estimation on formability of knife press forming process for the thick pipes is carried out. From the results, it is ensured that the thick pipes could be obtained by the knife press forming process.

  • PDF

Outer Bending of a Cold Forged Circle Flange (냉간단조된 후판형 플랜지 돌출부 굽힘성형 공정연구)

  • Kim, D.W.;Shin, Y.C.;Choi, H.J.;Yun, D.J.;Shin, I.C.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.453-458
    • /
    • 2012
  • The flange hub is a main component of an automotive steering system. Dimensional precision of the flange hub is very important for precise control of the steering force. Consequently, the process design for precision forming of a flange hub is required. The teeth of the flange hub are generally formed by bending. In this study, the formability of flange bending was investigated using FE simulations. For the optimum process conditions, the flange is bent by movement of an insert die, and the die angle and bending length are selected as $90^{\circ}$ and 4mm respectively.