• 제목/요약/키워드: Bending machine

검색결과 389건 처리시간 0.025초

SM 50A 강으로 제작된 T-형 용접형상의 용접후처리 방법이 피로수명 증가에 작용하는 역할 (Role of Post Weld Treatment Methods in the Improvement of Fatigue Life for T-type Welded Structures Made by SM 50A Steel)

  • 한창완;이재훈;송준혁;이현우;박성훈
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.307-312
    • /
    • 2012
  • This study aims to investigate the effect of the post weld treatments on the fatigue life of T-type welded structure made by a SM50A steel material, generally used for excavators, because changes in the geometry, material and surface properties of welded regions affect the fatigue life of welded structures. T-type test specimens were prepared by the CO2 welding of rolled steel plates (SM50A steel) with a thickness of 10 mm at a welding speed of 30 cm/min and these Ttype welded specimens were further treated by UIT (Ultrasonic Impact Treatment) and/or toegrinding post welding treatment methods. In order to investigate improvements on the fatigue life of the samples. 3-point bending fatigue tests were conducted with a stress ratio of R=0.1 under a cyclic loading environment at a frequency of 5 Hz, via a hydraulic fatigue testing machine (${\pm}100\;kN$, MTS 809). The tests were performed at room temperature. The fatigue life of UIT specimens was approximately 25 times longer than that of as-welded specimens at a stress amplitude of 281 MPa, while toe-grinding specimens exhibited 4.15 times longer fatigue life. The current results could provide important guidelines to determine the proper post weld treatment methodologies of T-type welded parts for excavators with a satisfactory fatigue life although under severe operating conditions.

피로한도 이하에서 발생하는 압입축의 접촉손상 특성 (Characterization of Contact Surface Damage in a Press-fitted Shaft below the Fretting Fatigue Limit)

  • 이동형;권석진;함영삼;유원희
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.42-47
    • /
    • 2010
  • In this paper, the characteristics of contact surface damage due to fretting in a press-fitted shaft below the fretting fatigue limit are proposed by experimental methods. A series of fatigue tests and interrupted fatigue tests of small scale press-fitted specimen were carried out by using rotating bending fatigue test machine. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that fretting fatigue cracks were initiated even under the fretting fatigue limit on the press-fitted shafts by fretting damage. The fatigue cracks of press-fitted shafts were initiated from the edge of contact surface and propagated inward in a semi-elliptical shape. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. After steep increasing, the increase of wear rate is nearly constant under the load condition below the fretting fatigue limit. It is thus suggested that the fretting wear must be considered on the fatigue life evaluation because the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in the press-fitted structures.

Spring의 lumen size와 helical coil 형성 위치 변화가 교정력에 미치는 영향 (Impact of Lumen Size and Helical Coil Place Change in Spring on Orthodontic Force)

  • 이규선;이선경;김복동
    • 대한치과기공학회지
    • /
    • 제33권4호
    • /
    • pp.331-337
    • /
    • 2011
  • Purpose: The purpose of this study was to impact of force system change in finger spring that add helical coil one round on orthodontic force. Methods: The following conclusions were drawn from the experiment conducted after bending 90 samples with a CNC wire forming machine while changing the height and lumen size to 1mm - 3mm - 5mm and 2mm - 3mm - 4mm respectively in the coil of the force system in finger spring added with one wheel of helical coil of 18-8 stainless steel round wire (${\Phi}0.5mm$, spring hard) from Jinsung Co. in domestic market under the following conditions: Laboratory name = Instron 5942; Temperature($deg^{\circ}C$) = 18.00; Humidity(%) = 50.00; Rate 1 = 10.00000 mm/min; Compressive extension = 5.0mm. Results: When Coil height is 1, 3, 5mm and lumen size is 2, 3, 4mm reduce finger spring as mean value of compressive extension occasion maximum load(mN) increases as coil height rises, and lumen size grows to 5.0mm. And was expose that compressive load(mN) increases as coil position of finger spring rises and increase as lumen size is decrescent. Conclusion: As the adherence height of coil was raised from 1mm through 3mm to 5mm, compressive load increased. As the lumen size increased from 2mm through 3mm to 4mm, compressive load decreased. Therefore, these results suggest that it is desirable to lower the coil height and enlarge the lumen size to enhance the biomechanical efficiency of finger spring when manufacturing the finger spring for removable orthodontic devices.

유한요소법과 샤피충격시험기에 의한 노치각도에 따른 나일론 열가소성 플라스틱 재료의 파괴특성 (Dynamic Fracture Properties of Nylon Thermoplastic Material Depending on Notch Angle with Charpy Impact Machine and Finite Element Method)

  • 박명균;이중원;김태옥
    • 한국가스학회지
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2008
  • 샤피충격시험은 동적하중 하에 있는 고분자 재료의 거동을 이해하는데 가장 널리 사용되고 있는 방법이다. 본 연구에서는 샤피충격시험장치에서 얻어지는 파단에너지를 사용하여 나일론 소재 샤피 시편의 노치각도에 따른 에너지 해방율을 구하는 방법을 제시하였다. 또한 샤피충격시험장치를 계장화하여 최대 하중과 파단 시까지 소요되는 에너지 등의 파손인자들을 산출하였다. 그리고 노치각도에 따른 동적파괴 인성치와 유한요소법을 사용하여 중앙집중 하중 하에서 사피 시편의 노치각도에 따른 응력분포를 산출하였다.

  • PDF

고장력 Cr-Mo강의 질화처리에 따른 피로특성 (Effect of Nitriding on Fatigue Characteristics of Cr-Mo Alloy Steel)

  • 오광근;김재훈;최훈석
    • 대한기계학회논문집A
    • /
    • 제39권6호
    • /
    • pp.597-602
    • /
    • 2015
  • 고장력 Cr-Mo강은 이온질화와 연질화 두가지 질화처리를 수행하였다. 각 질화처리의 특징을 비교하기 위해서 30분의 공정시간을 가지고 질화처리를 하였다. 표면강도의 변화를 비교하기 위해서 비커스 경도 시험이 수행되었으며 피로시험은 켄틸레버 회전굽힘 피로시험기(Yamamoto, YRB 200)를 이용하여 수행되었다. 초고주기영역($N>10^7cycle$)의 특징을 알아보기 위해서 피로시험은 피로한도 이후까지 진행하였다. 피로 시험 후 주사전자현미경(SEM)을 이용해서 파단면을 분석하였으며 고주기영역과 초고주기 영역의 파괴기구를 관찰하였다.

패션 일러스트레이션에 반영된 포스트휴먼의 신체 표현특징 (The Expressive Characteristics of the Posthuman Body in Fashion Illustration)

  • 최정화
    • 한국의류학회지
    • /
    • 제35권9호
    • /
    • pp.1085-1098
    • /
    • 2011
  • In the $21^{st}$ century, technology is a tool for the expansion of the five senses and physical ability that works as an element for posthuman identity. This study analyzes and theorizes on the characteristics of the posthuman body in fashion illustration. The method of this study analyzes documentaries about posthuman and fashion illustration. The results are as follow. Posthuman body types are classed as hybrid body, plastic surgery body, and digital body. The characteristics of the posthuman body are categorized as ultra- functional prosthetic, mythical undifferentiated, radical plastic surgery type and post-physical digitization type. The ultra-functional prosthetic type shows a restored body and upgraded functional body through a machine hybrid, cyborg suit and mannequin hybrid. It is a break from classical gender identity to form a nerve sense extension that displays physical and abstract power. The mythical undifferentiated type shows a therianthropic form, parts of an animal body, radical skin and gender bending. It represents the return to an undifferentiated world, the desire of a powerful being and the possibility of radical transformation. The radical plastic surgery type shows a photomontage of an ideal body, transgendered body, grotesque body marking, absence of partial or overall face organ and the expansion of abnormal body organs. It represents the expression of narcissism, unconscious desire, fantasy, fear and suggests an alternative ideality, sexual attachment and ambiguous gender identity. The post-physical digitization type shows an imperfect form or duplicated ego image through the omission of the body silhouette or detailed form, fragmented image using net, representative self like optical illusion using typography, an imperfect vague silhouette and immaterial body outline through the use of virtual light. It represents the lack of desire, narcissism, fluidity in a virtual space, the continued creation of a new self, ambiguous gender identity and the liberation of environment, sex, and race. Likewise, the posthuman in fashion illustration shows the absence of a species boundary, destruction of classical gender identity, a new personality and virtual self image.

3D 프린터에 공급되는 PLA 필라멘트의 물성치 측정 (Measurement of Structural Properties of PLA Filament as a Supplier of 3D Printer)

  • 최원;우재형;전정배;윤성수
    • 한국농공학회논문집
    • /
    • 제57권6호
    • /
    • pp.141-152
    • /
    • 2015
  • Most of agricultural structures are consisted of complex components and exposed to various boundary conditions. There have been no ways to express those structures exactly for model experiment. As an alternative, 3D printer can produce any type of solid model. However, there are limited informations related to structural experiments using 3D printer. The object of this study gives the basic informations to structural engineers who try to use 3D printer for model experiment. When PLA was used as a supplier for 3D printer, the outcomes showed less heat deformation to compare with ABS. To test the material properties, two kinds of experiments (three-point flexibility test and compression test) were executed using universal testing machine. In three-point flexibility test, plastic hinge and its deformation were developed as observed in material such as steel. The behavior was in a linear elastic state, and elastic bending modulus and yield force were evaluated. In the compression test using unbraced columns with hinge-hinge boundary condition, the constant yield forces were observed regardless of different lengths in all columns with same section size, whereas the compressive elastic modulus was increased as the length of column was increased. The suggested results can be used for model experiments of various agricultural structures consisted of single material.

3종의 간접수복용 복합레진의 굴곡강도 비교 및 표면관찰 (Evaluation of Flexural strength and surface porosity of three indirect composite resins)

  • 김준태;박진영;김웅철;김지환
    • 대한치과기공학회지
    • /
    • 제39권1호
    • /
    • pp.9-16
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate flexural strength, composite surface and fractured surface of three different indirect composite resins. Methods: Fifteen bar-shaped specimens ($25mm{\times}2mm{\times}2mm$) were fabricated for each FL group (Flow type and Light curing) and PLP group (Putty type and Light, Pressure curing) and PL group (Putty type and Light curing) according to manufacturer's instructions and ISO 10477. Fabricated specimens were stored in the distilled water for 24 hours at the temperature of $37^{\circ}C$. Three-point bending strength test was performed to measure flexural strength using universal testing machine at a crosshead speed of 1mm/min (ISO 10477). Surface and fractured surface of specimens were observed by digital microscope. Results were analyzed with Kruskal-wallis tests (${\alpha}=0.05$). Results: Mean (SD) of three different indirect composite resins were 83.38 (6.67) MPa for FL group, 139.90(16.53) MPa for PLP group and 171.72(16.74) MPa for PL group. Flexural strength were statistically significant (p<0.05). Differences were not observed at fractured surface among three groups. However, many pores over $100{\mu}m$ were observed at PL group in observing surface of specimen. Conclusion: Flexural strength of composite resins was affected by second polymerization method and content of inorganic filler.

Effect of solution temperature on the mechanical properties of dual-cure resin cements

  • Kang, En-Sook;Jeon, Yeong-Chan;Jeong, Chang-Mo;Huh, Jung-Bo;Yun, Mi-Jung;Kwon, Yong-Hoon
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권2호
    • /
    • pp.133-139
    • /
    • 2013
  • PURPOSE. This study was to evaluate the effect of the solution temperature on the mechanical properties of dualcure resin cements. MATERIALS AND METHODS. For the study, five dual-cure resin cements were chosen and light cured. To evaluate the effect of temperature on the specimens, the light-cured specimens were immersed in deionized water at three different temperatures (4, 37 and $60^{\circ}C$) for 7 days. The control specimens were aged in a $37^{\circ}C$ dry and dark chamber for 24 hours. The mechanical properties of the light-cured specimens were evaluated using the Vickers hardness test, three-point bending test, and compression test, respectively. Both flexural and compressive properties were evaluated using a universal testing machine. The data were analyzed using a two way ANOVA with Tukey test to perform multiple comparisons (${\alpha}$=0.05). RESULTS. After immersion, the specimens showed significantly different microhardness, flexural, and compressive properties compared to the control case regardless of solution temperatures. Depending on the resin brand, the microhardness difference between the top and bottom surfaces ranged approximately 3.3-12.2%. Among the specimens, BisCem and Calibra showed the highest and lowest decrease of flexural strength, respectively. Also, Calibra and Multilink Automix showed the highest and lowest decrease of compressive strength, respectively compared to the control case. CONCLUSION. The examined dual-cure resin cements had compatible flexural and compressive properties with most methacrylate-based composite resins and the underlying dentin regardless of solution temperature. However, the effect of the solution temperature on the mechanical properties was not consistent and depended more on the resin brand.

Modern Paper Quality Control

  • Komppa, Olavi
    • 펄프종이기술
    • /
    • 제32권5호
    • /
    • pp.72-79
    • /
    • 2000
  • On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard. Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and cockling tendency, and provides the necessary information to fine-tune the manufacturing process for optimum quality. Many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, being beyond the measurement range of the traditional instruments or resulting inconveniently long measuring time per sample. The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, non-leaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layers of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow n well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. Hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly as planned (having even small measurement error or malfunction), the process control will set the machine to operate away from the optimum, resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

  • PDF