• 제목/요약/키워드: Bending joint

검색결과 437건 처리시간 0.027초

Study on mechanical behaviors of loose mortise-tenon joint with neighbouring gap

  • He, Jun-xiao;Wang, Juan;Yang, Qing-shan;Han, Miao;Deng, Yang
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.509-521
    • /
    • 2021
  • The neighbouring gaps at the mortise-tenon joint in traditional timber structure, which leads to the complexity of the joint, are considered to impair the mechanical performance of the joint. In this paper, numerical simulation of loose joint was conducted to examine the deformation states, stress distributions, and bearing capacities, which was verified by full-scale test. On the basis of the experimental and numerical results, a simplified mechanics model with gaps has been proposed to present the bending capacity of the loose joint. Besides, the gap effects and parameter studies on the influences of tenon height, friction coefficient, elastic modulus and axial load were also investigated. As a result, the estimated relationship between moment and rotation angle of loose joint showed the agreement with the numerical results, demonstrating validity of the proposed model; The bending bearing capacity and rotational stiffness of loose joint had a certain drop with the increasing of gaps; and the tenon height may be the most important factor affecting the mechanical behaviors of the joint when it is subjected to repeated load; Research results can provide important references on the condition assessments of the existing mortise-tenon joint.

슬래브 형식 프리캐스트 모듈러교량 종방향 연결부의 휨강도 및 균열 사용성에 관한 정적재하실험 (Static Load Tests on Flexural Strength and Crack Serviceability of a Longitudinal Joint for the Slab-Type Precast Modular Bridges)

  • 이정미;이상윤;송재준;박경훈
    • 콘크리트학회논문집
    • /
    • 제27권2호
    • /
    • pp.137-145
    • /
    • 2015
  • 슬래브 형식 프리캐스트 모듈러교량은 횡방향으로 분절되어 제작된 프리캐스트 모듈을 현장에서 조립하는 형태의 교량으로서 분절된 프리캐스트 모듈 사이에는 종방향 연결부가 형성되며, 프리캐스트 모듈의 조립은 모듈 사이에 고성능 무수축 모르타르를 주입한 후에 횡방향으로 긴장력을 도입함으로써 이루어진다. 본 연구에서는 연결부의 휨 거동을 바탕으로 설계단계에서 산정된 횡방향 도입 긴장력 수준의 적정성 및 연결부의 형상이 휨 거동에 미치는 영향을 검토하기 위해 슬래브 형식 프리캐스트 모듈러교량의 연결부를 적용한 실험체를 이용한 4점 재하 휨 실험과 3점 재하 휨 실험을 수행하였다. 4점 재하 휨 실험은 긴장력의 변화가 연결부의 휨강도에 영향을 미치며 연결부의 형상은 순수한 휨모멘트가 작용하는 단면의 휨강도에는 영향을 미치지 않는다는 결과를 보여주었다. 3점 재하 휨 실험은 연결부에 휨모멘트와 전단력을 동시에 작용시키는 실험 방법으로, 연결부의 형상이 휨강도와 균열 사용성에 영향을 미친다는 결과를 보여주었다. 두 가지의 휨 실험 결과로부터 본 연구에서 적용한 긴장력은 적정하였으며 두 개의 전단키를 갖는 연결부가 균열 사용성 측면에서 유리하다는 것을 확인할 수 있었다.

5층 철근콘크리트 중간모멘트골조의 비탄성 시간이력해석 (Inelastic Time History Analysis of a 5-Story Reinforced Concrete IMRF)

  • 강석봉;임병진
    • 한국지진공학회논문집
    • /
    • 제16권6호
    • /
    • pp.13-20
    • /
    • 2012
  • In this study, 5-story structures were designed in accordance with KBC2009 for inelastic time history analysis of RC IMRF. Bending moment-curvature relationship for beam and column was identified with fiber model and bending moment-rotation relationship for beam-column joint was calculated with simple and unified joint shear behavior model and moment equilibrium relationship for the joint. The hysteretic behavior was simulated with three-parameter model suggested in IDARC program. The analytical results showed that the inelastic shear behavior of the joint could be neglected in the structural design for seismic design category C but the structure of category D did not satisfy the criteria of FEMA 356 for collapse prevention performance level.

프리캐스트 바닥판용 클램프 조인트의 정적내하력 (Static Strength of Cramp Joint at Precast Highway Deck Slabs)

  • 김윤칠
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권5호
    • /
    • pp.187-193
    • /
    • 2006
  • 도로교 프리캐스트 바닥판의 현장 조인트로써 특수한 구조의 클램프를 이용하여 새로운 형식의 조인트를 개발하였다. 이 클램프 조인트에 의한 방법은 클램프를 이용하여 주철근을 루프 조인트에 연결하는 방법이다. 현재까지 일반적으로 사용되고 있는 루프 조인트와 비교하여 시공성 경제성이 우수하고 클램프의 인터록킹에 의하여 휨모멘트 전단내력에 효과를 나타내었다. 본 논문은 휨 강성 및 전단내력의 실험을 통하여 조인트의 파괴 메커니즘과 다양한 정적 거동의 결과를 규명하고자 일련의 실험을 수행하였다. 이러한 실험 연구의 결과로부터 루프조인트와 동등한 성능을 갖고 있다는 결론을 얻었다.

특수 목적 차량의 수상 추진체용 카단 샤프트의 유니버셜 조인트에 대한 응력 및 수명 평가 (Stress and Life Evaluation of Universal Joint of Cardan Shaft for Waterjet System of Special-Purpose Vehicle)

  • 배명호;이태영;조연상
    • Tribology and Lubricants
    • /
    • 제36권1호
    • /
    • pp.34-38
    • /
    • 2020
  • The powertrain of the waterjet system of a special-purpose vehicle makes use of the cardan shaft, which is composed of universal joints and shafts. These universal joints, composed of spiders and needle roller bearings, have to be designed with consideration for the bending and compressive stresses of the spiders and needle roller bearings, and the rating lives of the bearings. The bending and compressive stresses of the spider and bearing of a universal joint have been studied by many researchers. However, to design a universal joint effectively, overall consideration of the different specifications of needle roller bearings is necessary. In this study, the bending stresses of spiders and compressive stresses of needle roller bearings are calculated to design universal joints for powertrain cardan shafts with different roller diameters of bearing. Furthermore, the rating lives of the needle roller bearings are predicted using the calculated basic dynamic load ratings of the bearings. As a result, roller diameters less than 𝜙2.5 mm are found suitable through an analysis of the bending stress of the spider. All compressive stresses between spider and bearing, regardless of roller diameter, satisfy the requirements. Moreover, roller diameters of more than 𝜙2 mm are found suitable for the required rating life.

경사핑거접합법에 의한 소나무재의 휨강도성능개량 (I) (Improvement of Bending Performances by Sloped Finger-Joint Method in Pinus densiflora S. et Z. (I))

  • 변희섭;박한민;김종만
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권4호
    • /
    • pp.61-67
    • /
    • 1997
  • The bending performances of sloped finger-joints in Pinus densiflora S. et Z. were tested in order to improve the strength properties of finger-joint Sloped finger-cut pieces were jointed with four kinds of adhesives(resorcinol-phenol, oilic urethane, polyvinyl acetate, and polyvinyl-acryl acetate resin). The slope ratios of finger joints were 0, 0.5, 1.0, 2.0. The MOE, MOR and defletion to maximum load in bending of sloped finger-joints and solid wood specimen were measured. The results were: 1. The efficiencies of MOE to finger and sloped finger-joints were 82% or greater in every kind of adhesives except polyvinyl-acryl acetate resin adhesive and there were some effect of slope on the MOE in a sloped finger-joint for polyvinyl-acryl acetate and oilic urethane resin adhesives. 2. The effects of slope on the MOR to sloped finger-joints were showed in every kind of adhesive, because the efficiencies of MOR increased with increasing slope ratio in sloped finger-joints. The efficiencies of MOR to slope ratios of 0 and 2.0 ranged 43~65% and 76~82%, respectively. There was almost no effect of the kinds of adhesives on the MOR to the slope ratio of 2.0. 3. It was found impossible to estimate the bending strength of sloped finger-jointed Pinus densiflora S. et Z. by using MOE. The correlation coefficient(0.124) between MOE and MOR was very low and not significant at 5% level.

  • PDF

복합말뚝 연결부 안정성 평가 및 수평거동특성 분석 (Joint Stability and lateral behavior of composite piles)

  • 신윤섭;박재현;황의성;조성한;정문경;부교탁
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.553-558
    • /
    • 2010
  • The behavior of composite piles composed of steel pipe pile in the upper part and concrete pile in the lower part by a mechanical splicing joint was examined by field lateral load tests and bending tests. A total of 7 piles including two instrumented piles for bending test were installed. The soil profile consists of soft clay with weak silt with shallow groundwater level. Laboratory tests were carried out to determine the basic soil characteristics and the strength parameters. This paper presents the composite pile behavior with various portions of the upper steel pile: 0, 20, 30, and 45% of the pile embedded pile length. Three-point bending tests were performed to investigate the stress-strain relation at the mechanical joint. Based on these test results, the behavior of composite piles with various upper steel pile length are evaluated and the stability of mechanical joints are examined. Through comparisons with results of field load tests, it was found that lateral load carrying capacity of the composite piles increased and deflections of the composite piles decreased with increasing the upper steel piles. The mechanical joint was proved to retain its structural stability against the tested load conditions. Economical benefits of composite pile of this kind can be gained by setting adequately the length of the upper steel pipe piles.

  • PDF

FATIGUE STRENGTH OF FILLET WELDED STEEL STRUCTURE UNDER OUT-OF-PLANE BENDING LOAD

  • Kang, Sung-Won;Kim, Wha-Soo;Paik, Young-Min
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.113-120
    • /
    • 2002
  • The effect of out-of-plane loads on the fatigue strength of welded steel structures is examined through fatigue tests with weldment of two fillet weld joint types. The results of the fatigue tests are compared with those under axial loads, on the basis of the hot spot stress range at the weld toe. From the result of the comparison, a method on how to incorporate the effect of the out-of-plane bending stress is proposed using design S-N curves derived from fatigue tests under the axial load. The proposed method is useful for rational assessment of the fatigue strength of fillet-welded structures, where combined stresses of the in-plane axial stress and the out-of-plane bending stress are induced simultaneously due to the complexity of applied loads and structural geometry.

  • PDF

Fatigue Strength of Fillet Welded Steel Structure Under Out-of-plane Bending Load

  • Kang, S.W.;Kim, W.S.;Paik, Y.M.
    • International Journal of Korean Welding Society
    • /
    • 제2권1호
    • /
    • pp.33-39
    • /
    • 2002
  • The effect of out-of-plane loads on the fatigue strength of welded steel structures is examined through fatigue tests with weldment of two fillet weld joint types. The results of the fatigue tests are compared with those under axial loads, on the basis of the hot spot stress range at the weld toe. From the result of the comparison, a method on how to incorporate the effect of the out-of-plane bending stress is proposed using design S-N curves derived from fatigue tests under the axial load. The proposed method is useful for rational assessment of the fatigue strength of fillet-welded structures, where combined stresses of the in-plane axial stress and the out-of-plane bending stress are induced simultaneously due to the complexity of applied loads and structural geometry.

  • PDF

Modelling and classification of tubular joint rigidity and its effect on the global response of CHS lattice girders

  • Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • 제21권6호
    • /
    • pp.677-698
    • /
    • 2005
  • In engineering practice, tubular connections are usually assumed pinned or rigid. Recent research showed that tubular joints may exhibit non-rigid behavior under axial or bending loads. This paper is concerned with establishing a new classification for tubular joints and investigating the effect of joint rigidity on the global behavior of CHS (Circular Hollow Section) lattice girders. Parametric formulae for predicting tubular joint rigidities are proposed, which are based on the finite element analyses through systematic variation of the main geometric parameters. Comparison with test results proves the reliability of these formulae. By considering the deformation patterns of respective parts of Vierendeel lattice girders, the boundary between rigid and semirigid tubular connections is built in terms of joint bending rigidity. In order to include characteristics of joint rigidity in the global structural analysis, a type of semirigid element which can effectively reflect the interaction of two braces in K joints is introduced and validated. The numerical example of a Warren lattice girder with different joint models shows the great effect of tubular joint rigidities on the internal forces, deformation and secondary stresses.