• 제목/요약/키워드: Bending fatigue

검색결과 661건 처리시간 0.029초

알루미늄 합금(AI7050-T7451)의 반복 굽힘 하중하의 프레팅 피로거동 평가 (Evaluation of Fretting Fatigue Behavior of Aluminum Alloy(A17050-T7451) Under Cyclic Bending Load)

  • 김종성;윤명진;최성종;조현덕
    • 한국기계가공학회지
    • /
    • 제9권1호
    • /
    • pp.25-34
    • /
    • 2010
  • Fretting damage reduces fatigue life of the material due to low amplitude cyclic sliding and changes in the contact surfaces of strongly connected machine and structures such as bolt, key, fixed rivet and connected shaft, which have relative slip of repeatedly very low frequency amplitude. In this study, the fretting fatigue behavior of 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were evaluated. The plain fatigue test and fretting fatigue test under cyclic bending load carried out commercial bending fatigue tester and specially devised equipments to cause fretting damage. From these experimental work, the following results obtained: (1) The plain fatigue limit for stress ratio R=-l was about 151MPa. (2) In case of fretting fatigue, fatigue limit for stress ratio R=-l about 72MPa, the fatigue limit for R=0 about 81MPa, and the fatigue limit for R=0.3 about 93MPa. (3) The fatigue limit reduction rates by the fretting damage were about 52%(R=-1), 46%(R=0) and 38%(R=0.3) respectively. (4) The fatigue limit reduction rate decreased with stress ratio increase. In fretting bending test, as stress ratio increased, occurrence of initial oblique crack by fretting decreased or phased out, so that fracture surfaces were formed by plain fatigue crack occurrence, and such tendency was notable as stress amplitude increased. (5) Tire tracks and rubbed scars were observed in the fracture surface and contacted surface.

고온.고습하에서 직교이방성 CFRP 복합적층판이 잔류피로 굽힘강도에 미치는 영향에 관한 연구 (A Study on Effects to Residual Fatigue Bending Strength or Orthotropy CFRP Composite Laminates under High Temperature and Moisture)

  • 임광희;양인영
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.247-258
    • /
    • 2000
  • It is thought that impact damages and hygrothermals can affect to CFRP (Carbon-fiber reinforced plastic) composite laminated due to the sensitivity on the composite laminated Therefore, this paper focuses on the fracture mechanisms experimentally based on a scanning acoustic microscope (SAM) when subjected to impact damages, i.e., foreign object damages(FOD), and also the influence of impact damages and hygrothermals on residual fatigue bending strength of CFRP laminates. Composite laminates used in the experiment are CF/EPOXY orthotropy laminated plates, which constist of two-interfaces [04/904]s. A steel ball launched by an air gun collides against CFRP laminates to generate impact damages. Bending fatigue tests are periodically interrupted for a nondestructive evaluation (NDE) measurement of the progrossive damages to built the fracture mechanism by impact damages, and three-point fatigue bending tests are carried out to investigate the influence of hygrothermals on the effect on the residual bending fatigue strength of CFRP laminates.

  • PDF

T형 평면용접이음재의 응력해석과 굽힘피로강도에 관한 연구 (A Study on Stree Analysis and Bending Fatigue Strength of One Side Fillet Welded T-joint)

  • 강성원;이태훈;전재목;김충희
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.51-57
    • /
    • 1999
  • In this study, one side fillet welded T-joint, used in box type girder and other welding structure, was investigated by stress analysis and bending fatigue test without edge preparation, with variation of joint shape. The purpose of this study is to give the welding condiltion and design standard on manufacturing one side fillet welded T-joint. As a result, the following conclusions were obtained. 1) In one side fillet welded T-joint, the larger the leg length and the penetration depth, the greater the bending fatigue strength because reduction of stress and strain on toe and root. The increase of the longitudinal leg length rather than vertical leg length contributed to the increase in bending fatigue strength. 2) In one side fillet welded T-joint without edge preparation, both general manual welding and general automatic welding were carried out with same condition. In this case, automatic welding showed deeper penetration and more increased longitudinal leg length than manual welding, so that automatic welding offers greater bending fatigue strength. 3) For one side fillet welded T-joint without edge preparation with automatic welding, the ratio(h/t) of the leg length(h) and the main plate thickness(t) in which toe crake can occur was 1.0 over.

  • PDF

열처리 조건에 따른 미세 강선의 굽힘 피로 특성 변화 (Effects of Patenting Temperature on the Bending Fatigue Resistance of the Steel Filaments used for Automotive Tire)

  • 양요셉;배종구;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.454-457
    • /
    • 2008
  • Effects of patenting temperature on bending fatigue resistance of pearlitic steel filaments were investigated experimentally. The fatigue resistance of steel filaments was carried out by using hunter machine, specially designed for ultra fine-sized steel wires, in the controlled conditions. The transmission electron microscopy (TEM) was used for observing the overall microstructure. It revealed that the fatigue resistance as well as tensile strength increased together with increase of patenting temperature from 510 to $600^{\circ}C$, while the endurance ratio ($\sigma_e/\sigma_{TS}$) of filaments decreased. It is believed that this variation of mechanical properties with change of patenting temperature should be strongly influenced by the change of microstructure. The bending fatigue properties of steel filaments were discussed based on microstructural parameters.

  • PDF

굽힘 압전 복합재료 작동기의 전기적 피로 거동 (Electric Fatigue Behavior of a Bending Piezoelectric Composite Actuator)

  • 우성충;구남서
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.362-367
    • /
    • 2008
  • In the present work, we address electric fatigue behavior in bending piezoelectric actuators using an acoustic emission technique. Electric cyclic fatigue tests have been performed up to ten million cycles on the fabricated specimens. To confirm the fatigue damage onset and its pathway, the source location and distributions of the AE behavior in terms of count rate are analyzed over the fatigue range. It is concluded that electric cyclic loading leads to fatigue damages such as transgranular damages and intergranular cracking in the surface of the PZT ceramic layer, and intergranular cracking even develops into the PZT inner layer, thereby degrading the displacement performance. The electric-induced fatigue behavior seems to show not a continuous process but a step-by-step process because of the brittleness of PZT ceramic. Nevertheless, this fatigue damage and cracking do not cause the final failure of the bending piezoelectric actuator loaded up to 107 cycles. Investigations of the AE behavior and the linear AE source location reveal that the onset time of the fatigue damage varies considerably depending on the existence of a glass-epoxy protecting layer.

  • PDF

콘크리트궤도 장대레일의 휨 피로수명 평가 (Estimation of Bending Fatigue Life of CWR in Concrete Track)

  • 성덕룡;태성식;박광화;강윤석;박용걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.64-71
    • /
    • 2010
  • 장대레일 교체주기는 자갈궤도 레일두부 표면요철과 레일 휨피로의 상관관계 분석을 통해 산정되었다. 본 연구에서는 실물 레일 휨 피로시험을 통한 레일의 S-N선도, 국내 도시철도(서울메트로) 콘크리트궤도에서 발생하는 레일 휨응력 예측식, Haibach's rule을 통해 콘크리트궤도 장대레일의 휨 피로수명을 평가하였다. 여기서, 레일용접방법별 S-N선도와 레일표면요철, 열차운행속도가 고려되었다. 또한, S-N선도 파괴확률 1%, 0.1%, 0.01%를 고려한 휨 피로수명을 비교하였다. 따라서 본 연구에서는 콘크리트궤도 장대레일의 휨 피로수명을 제안하였다.

  • PDF

Ti-6Al-4V재의 UNSM처리에 의한 회전굽힘피로특성변화 (Variation of Rotating Bending Fatigue Characteristics by UNSM on Ti-6Al-4V)

  • 서창민;편영식;서민수
    • 한국해양공학회지
    • /
    • 제25권6호
    • /
    • pp.49-55
    • /
    • 2011
  • In order to analyze feasibility of replacing a conventional 6-mm Ti bar with a 5-mm bar, a series of rotating bending fatigue tests were carried out on Ti-6Al-4V bars by strengthening the fatigue performance using a special technique called UNSM (Ultrasonic Nanocrystal Surface Modification). The results of S-N curves clearly showed that the performance of the 5-mm titanium specimen was similar to that of the 6-mm specimen when the UNSM treatment was applied. The 5-mm treated specimen converged with small scattering band into the linear line of the non-treated 6-mm one. Below the fatigue life of $10^5$ cycles, the UNSM treatment did not show any significant superiority in the bending stress and fatigue life. However, over the fatigue life of $10^5$ cycles, the effect of UNSM was superior for each fatigue life, and the bending stress became longer and higher than that of the untreated one. In the case of 6-mm Ti-bar with UNSM, the fatigue limit was about 592 MPa, and there was fatigue strength increase of about 30.7% at the fatigue life of $10^4$ cycles compared to the untreated 6-mm bar. Therefore, the compressive residual stress made by the UNSM in Ti-6Al-4V increased the fatigue strength by more than 30%.

SCM415 침탄치차의 굽힘피로강도평가에 관한 연구 (A Study on Evaluation of Bending Fatigue Strength in SCM415 Carburized Spur Gear)

  • 류성기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.763-770
    • /
    • 1998
  • This paper deals with evaluation of bending fatigue strength in SCM415 carburized spur gears. The constant stress amplitude fatigue test is performed by using an electrohydraulic servo-controlled pulsating tester. The S-N curves are obtained and the enhanvement of fatigue strength due to carburized treatment is clarified. In this study the improvement of fatigue strength is assumed to be caused by an increase of both hardness and residual stress and experimental formula has been proposed for the estimation of bending fatigue strength of carburized gears. The effect of surface conditions on the fatigue strength is evaluated quantitatively and it is close to the relative surface condition factor used in the ISO strength rating formula.

  • PDF

충격하중을 받은 CFRP 적층판의 손상거동과 잔류굽힘피로강도 (Damage Behavior and Residual Bending Fatigue Strength of CFRP Composite Laminates Subjected to Impact Loading)

  • 임광희;양인영
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1836-1842
    • /
    • 1996
  • In this paper, static and fatigue bending strengths of CFRP(carbon fiber reinforced plastic laminates having impact damage(FOD) are evaluated. Composite laminates used for this experiment are CF/EPOXY and CF/PEEK orthotropy laminated plates, which have two-interfaces[${0^0}_4{90^0}_4}$]$_sym$. A steel ball launched by the air gun colides against CFRP laminates to generate impact damages. The damage growth during bending fatigue test is observed by the scanning acoustic microscope(SAM). When the impacted side is compressed, the residual fatigue bending strength of CF/PEEK specimen P is greater that that of CF/EPOXY SPECIMEN B. On the other hand, when the impacted side is in tension, the residual fatigue bending strength of CF/PEEK speicemen P is smaller than that of CF/EPOXY specimen B. In the case of impacted-side compression, fracture is proposed from the transverse crack generated near impact point. On the other hand, fracture is developed toward the impact point from the edge of interface-b delamination in the case of impacted-side tension.

슬라이드형 휴대폰 FPCB(Flexible Printed Circuit Board)의 수명예측 (Lifetime Estimation for FPCB of Slide mobile phone)

  • 최진영;장석원;곽계달
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1283-1288
    • /
    • 2008
  • The FPCB is used as the important component of the sliding mechanism of mobile phones. FPCB have been used as jumper cables(fixed wiring) in various types of circuits because of their flexibility and bending property. The dominant failure mode of the FPCB is open that was caused by fatigue. The fatigue is repeated whenever the sliding is open, so it is a mainly cause of FPCB fatigue. We examined the bending-fatigue lifetime of FPCB. we focused on observing the contact resistance degradation of FPCB of mobile phones according to different test condition of bending strain. As a result, it has proved that lifetime decreased by increasing bending strain.

  • PDF