• Title/Summary/Keyword: Bending System

Search Result 1,501, Processing Time 0.029 seconds

Influence of Construction Combination of Rib Stitch and Milan Stitch on Objective Hand Values of Weft Knit (위편성물에서 Rib stitch와 Milan stitch의 편성결합이 태에 미치는 영향)

  • Kwon, Jin;Kwon, Myoung-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.1 s.160
    • /
    • pp.68-76
    • /
    • 2007
  • The purpose of this study is to investigate change of mechanical and physical properties, shape behavior and hand value in weft knit when rib stitch and milan stitch are combined. The knit stitches used in this study are plain stitch, half milan rib stitch, milan rib stitch, $2{\times}1$ rib stitch, $2{\times}1$ half milan rib stitch and $2{\times}1$ milan rib stitch. We analyzed physical and mechanical properties(tensile, bending, shear, compression, surface properties, thickness and weight) of the knit stitches and calculated their primary hand value and total hand value through translational formulas using the KES(Kawabata Evaluation System). The results are as follows; In evaluation of mechanical properties and hand values of knit stitches, plain stitch had the highest flexibility and the lowest T.H.V. as women's winter knit wear. Since $2{\times}1$ rib stitch had too high elongation in one direction, although it had the highest T.H.V, it needs to be careful when plain stitch and $2{\times}1$ rib stitch are applied for women's winter knit wear. Since Milan rib stitch and $2{\times}1$ milan rib stitch had high T.H.V. similarly, it is considered that they are suitable for women's winter knit wear. Specially, when Milan stitch is combined with $2{\times}1$ rib stitch, its shape stability and fullness are contained and flexibility is added on it. Therefore, $2{\times}1$ milan rib stitch can be also applied for women's winter knit wear.

An experimental Study on the Structural Performance Evaluation of One-way Hollow Core Slab (일방향 중공 슬래브의 구조성능 평가에 대한 실험적 연구)

  • Kim, Dong Baek;Song, Dae Gyeom;Choi, Jung Ho;Cho, Hyun Sang
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Purpose: Recently, As the size of the structure increased, the necessity of reducing its weight was raised. To reduce weight In concrete structures, a hollow slab is proposed as an alternative for weight reduction effect. Method: It is difficult to construct the hollow body due to buoyancy, and the shear performance is insufficient due to the decreased cross section. Slabs were fabricated using unidirectional hollow bodies such as PVC pipes, and experiments were conducted about construction performance and structural performance. Results: The buoyancy preventive device has been improved the construction performance by preventing floating hollow body, it has been confirmed that it has adequate performance to be used as a hollow slab system because it has enough expected shear performance. Coclusion: Hollow ratio has a little connection with bending performance, but after the yielding load, it is necessary to consider the secondary stiffness of structure, and is is supposed that the decrease of shear performance with the increase of hollow core ratio can be complemented with shear reinforcement.

A STUDY ON AMALGAM CAVITY FRACTURE WITH TWO DIMENSIONAL FINITE ELEMENT METHOD I : VARIATION OF THE WIDTH OF CAVITY (아말감 와동의 파절에 관한 2차원 유한요소법적 연구 I : 와동 폭의 변화)

  • Kim, Han-Wook;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.655-669
    • /
    • 1995
  • Restorative procedures can lead to weakening tooth due to reduction and alteration of tooth structure. It is essential to prevent fractures to conserve tooth. Among the several parameters in cavity designs, cavity isthmus is very important. In this study, amalgam 0 cavity was prepared on maxillary first premolar. Two dimensional finite element models were made by serial photographic method and isthmus(1/4, 1/3, 1/2, 2/3 of intercuspal distance) were varied. Three or four-nodal mesh were used for the two dimensional finite element models. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. 1S model was sound tooth with no amalgam cavity. B model was assumed perfect bonding between the restoration and cavity wall. Both compressive and tensile forces were distributed directly to the adjacent regions. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed von Mises stress, 1 and 2 directional normal stress and Y and Z axis translation with FEM software Super SAPII Version 5.2 (Algor Interactive System Co.) and hardware 486 DX2 PC. The results were as :follows : 1. 1S model was slightly different with 1B model in stress distibution. 1S, 2B, 3B, 4B models showed similiar stress distribution. 2. 1S model and four B models showed similiar pattern in Y axis and Z axis translation. 3. 1S model and four B models showed the bending phenomenon in the translation. 4. As increasing of the width of the cavity, experimental group was similiar with the control group in stress distribution. 5. As increasing of the width of the cavity, experimental group was similiar with the control group in Y and Z axis tranlation.

  • PDF

Elasto-plastic behaviour of joint by inserting length of H-beam and structural laminated timber (H형강과 구조용집성재의 삽입길이에 따른 접합부의 탄소성 거동)

  • Kim, Soon Chul;Yang, Il Seung;Moon, Youn Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.251-259
    • /
    • 2006
  • In some cases, wooden structures are used for medium-rise buildings. It is therefore necessary to develop and test a new structural system for medium-rise buildings using wooden structures. This study deals with high-performance, laminated, timber-based composite members, which consist of structural laminated timber and H-beam. Simple beam tests were performed to determine the strength, stress distributions, and failure patterns of laminated timber. The main parameters are the insertinglength (1, 1.5, and 2 times the H-beam height) and the epoxy between the top/bottom flange of the H-beam and the top/bottom flange of the laminated timber. The results of the test show that the specimen with an inserting length that is 2 times the H-beam height was characterized by fairly god strength and stiffness.

Exact Tangent Stiffness Matrix and Buckling Analysis Program of Plane Frames with Semi-Rigid Connections (부분강절로 연결된 평면뼈대구조의 엄밀한 접선강도행렬 및 안정성 해석프로그램 개발)

  • Min, Byoung Cheol;Kyung, Yong Soo;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Generally the connection of members is defined as hinge or rigid. But, real joints on structure have to be considered semi-rigid connections because this permits relative rotation for members on joints. The purpose of this study is to derive a generalized tangential stiffness matrix of frames with semi-rigid connections and to develop a buckling analysis program. For the exact stiffness matrix, an accurate displacement field is introduced using an equilibrium equation for beam-columns under the bending and axial forces. Also, stability functions that consider sway deformation and force-displacement relations with rotational spring on ends were defined. In order to illustrate the accuracy of this study and the characteristics of semi-rigid for system buckling load, samples of angle-, portal- and 3-story frames with semi-rigid connections are presented, where the proposed approach is found to be in excellent agreement with other research results. Meanwhile, the application of codes such as Eurocode 3 and LRFD led to significant inaccuracies.

Finite Element Analysis on Process Improvement of the Multi-Forming for the Motor-Case of an Automobile (자동차용 모터케이스 성형용 멀티포머의 공정개선에 관한 유한요소해석)

  • Kim H. J.;Bae W. B.;Cho J. R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.467-470
    • /
    • 2005
  • There are about 10 motors for tile actuator of the automation system in an auto-mobile recently. The performance of the motor-case is much related to the noise and the vibration of an auto-mobile Multi-Forming process is so much the better than existing deep-drawing or Multi-step forming by press by less cost, installation and staff. But there isn't the specific and general process design, so we aren't good at competition. So in the first step, I want to study about the core design for the multi-forming process. We can access by the elasto-plastic theory and the finite element method, and we use a commercial package of the Deform-2D and, Deform-3D which is based on three-dimensional elasto-plastic finite element, evaluated propriety oi the package. The evaluation of the package propriety was simulated by simple bending example. It was found the elasto-plastic theory was mostly in agreement with the simulation. We proposed that three type of section for the core and analyzed by finite element method (Deform-2D). We can get the best result with the ellipse type core. Then we apply the result of the preceding analysis to the finite element method (Deform-3D). In 3D-finite element analysis, we can get the result of 8/100mm-roundness. This result can help the improvement of the multi-forming process.

  • PDF

Single Carrier Spectroscopy of Bisolitons on Si(001) Surfaces

  • Lyo, In-Whan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.13-13
    • /
    • 2010
  • Switching an elementary excitation by injecting a single carrier would offer the exciting opportunity for the ultra-high data storage technologies. However, there has been no methodology available to investigate the interaction of low energy discrete carriers with nano-structures. In order to map out the spatial dependency of such single carrier level interactions, we developed a pulse-and-probe algorithm, combining with low temperature scanning tunneling microscopy. The new tool, which we call single carrier spectroscopy, allows us to track the interaction with the target macrostructure with tunneling carriers on a single carrier basis. Using this tool, we demonstrate that it is possible not only to locally write and erase individual bi-solitons, reliably and reversibly, but also to track of creation yields of single and multiple bi-solitons. Bi-solitons are pairs of solitons that are elementary out-of-phase excitations on anti-ferromagnetically ordered pseudo-spin system of Si dimers on Si(001)-c(42) surfaces. We found that at low energy tunneling the single bisoliton creation mechanism is not correlated with the number of carriers tunneling, but with the production of a potential hole under the tip. An electric field at the surface determines the density of the local charge density under the tip, and band-bending. However a rapid, dynamic change of a field produces a potential hole that can be filled by energetic carriers, and the amount of energy released during filling process is responsible for the creation of bi-solitons. Our model based on the field-induced local hole gives excellent explanation for bi-soliton yield behaviors. Scanning tunneling spectroscopy data supports the existence of such a potential hole. The mechanism also explains the site-dependency of bi-soliton yields, which is highest at the trough, not on the dimer rows. Our study demonstrates that we can manipulate not just single atoms and molecules, but also single pseudo-spin excitations as well.

  • PDF

Preparation of ultra-clean hydrogen and deuterium terminated Si(111)-($1{\times}1$) surfaces and re-observation of the surface phonon dispersion curves

  • Kato, H.;Taoka, T.;Murugan, P.;Kawazoe, Y.;Yamada, T.;Kasuya, A.;Suto, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.4-5
    • /
    • 2010
  • The surface phonon is defined as a coherent vibrational excitation of surface atoms propagating along the surface. It is characterized by a phonon dispersion curves, which were extensively studied in 1990's using helium atom scattering and high-resolution electron-energy-loss spectroscopy (HREELS)[1].The understanding is mainly based on the theoretical framework of a classical bond model or cluster calculations. The recent sample preparation and first principles calculations open the naval way to deep insight for surface phonon problems. The surface phonon dispersion on the hydrogen-terminated Si(111)-($1{\times}1$) surface [H:Si(111)] is the typical system and already reported experimentally [2] and theoretically [3], although the understandingis incomplete. The sample contaminated by the oxygen atoms on the surface and the calculations were also classical. In this study, firstly, we have prepared an ultra-clean H:Si(111) surface [4] and measured the surface phonon dispersion curvesusing HREELS. Secondly, we have performed first-principles density functional calculations with the projector augmented wave functionals, as implemented in VASP, using generalized gradient approximations. We used aslab of six silicon layers and both top and bottom surfaces were terminated with hydrogen atoms. Finally, we have compared with the surface phonon dispersion of deuterium-terminatedSi(111)-($1{\times}1$) surface[5] and led to our conclusions. The Si-H stretching and the bending modes are observed at 258.5 and 78.2 meV, respectively. These energies are the same as the previously reported values [2], but the energy-loss peaks at the lower energy regions are dramatically shifted. Through this combination study, we have formulated the procedure of preparing ultra-clean H:Si(111)/D:Si(111), which was confirmed by HREELS vibrational analysis. The Si surface will be utilized for further nano-physics research as well as for the materials for nano-fubrication.

  • PDF

Structural Integrity of Small Wind Turbine Composite Blade Using Structural Test and Finite Element Analysis (구조시험 및 유한요소해석을 통한 소형풍력발전용 복합재 블레이드의 구조 안전성 평가)

  • Jang, Yun-Jung;Lee, Jang-Ho;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1087-1094
    • /
    • 2012
  • This study deals with structural analysis and testing under loading conditions calculated by computational fluid dynamics for a small composite blade that is utilized in a dual rotor wind turbine system. First, the aerodynamic forces were analyzed at the rated and cutout wind speed to identify the bending moment distribution along the blade length in previous research. Then, full-scale structural tests were conducted according to IEC 61400-2 to evaluate the structural integrity of the composite blade. These results were compared with finite element analysis to identify the accuracy of the structural analysis. Based on these results, it was revealed that the existing blade has a very high safety margin. Then, the layup of the composite blade was redesigned and analyzed using finite element analysis to achieve structural integrity and economic efficiency.

A Study on the Treatment of Swine Wastewater by Using Intermittently Aerated Activated Sludge Process (간헐폭기법에 의한 돈사 폐수 처리에 관한 연구)

  • Yang, Tae-Du;Lee, Mi-Kyung;Chung, Yoon-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.86-96
    • /
    • 1998
  • In this study, an intermittently aerated activated sludge process, modified process from conventional activated sludge process, was developed to treat high strength swine wastewater, which has been blamed as major pollutant for stream pollution. Therefore, the optimum cycle for oxic and anoxic period, SRT, and OLR were studied as design parameters. The effects of different time interval for oxic and anoxic period on nitrification and denitrification were examined by operating two reactors with 60/60min and 60/90min as oxic/anoxic period. Although the reactor with 60/60min showed complete denitrification of $NO_x-N$ generated during oxic period, the reactor with 60/90min showed incomplete nitrification due to the inactivity of nitrifier by accumulated $NH_3-N$ toxicity during anoxic period. Therefore, it is recommended to operate same interval for oxic and anoxic period. In order to determine the optimum cycle for oxic/anoxic period, four different reactors with 30/30, 60/60, 90/90 and 120/120min were examined. The reactor operation with 90/90min was optimum to get the most stable results in this study. However, the optimum cycle for oxic and anoxic period should be changed with characteristics of influent wastewater and operating conditions. According to lie operation results of three reactors with SRT of 15, 20 and 30days. The reactor with 2Odays SRT showed best removal efficiency of T-N. The optimum OLR would be $2.5Kg\;COD/m^3/day$ which showed the most stable nitrification and denitrification. Since characteristics of influent wastewater in the real system has a severe fluctuation, so it is very difficult to determine each interval for oxic and anoxic period. Therefore, ORP curves, describing the change of oxidation/reduction potential in reactor, can be used as a control parameter for automatic control of oxic and anoxic period. In other words, bending point (Nitrate Knee) of ORP curve during anoxic period could be used as a starting point of oxic period.

  • PDF