• Title/Summary/Keyword: Bending Capacity

Search Result 614, Processing Time 0.023 seconds

Cracking and bending strength evaluations of steel-concrete double composite girder under negative bending action

  • Xu, Chen;Zhang, Boyu;Liu, Siwei;Su, Qingtian
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.371-384
    • /
    • 2020
  • The steel-concrete double composite girder in the negative flexural region combines an additional concrete slab to the steel bottom flange to prevent the local steel buckling, however, the additional concrete slab may lower down the neutral axis of the composite section, which is a sensitive factor to the tensile stress restraint on the concrete deck. This is actually of great importance to the structural rationality and durability, but has not been investigated in detail yet. In this case, a series of 5.5 m-long composite girder specimens were tested by negative bending, among which the bottom slab configuration and the longitudinal reinforcement ratio in the concrete deck were the parameters. Furthermore, an analytical study concerning about the influence of bottom concrete slab thickness on the cracking and sectional bending-carrying capacity were carried out. The test results showed that the additional concrete at the bottom improved the composite sectional bending stiffness and bending-carrying capacity, whereas its effect on the concrete crack distribution was not obvious. According to the analytical study, the additional concrete slab at the bottom with an equivalent thickness to the concrete deck slab may provide the best contributions to the improvements of crack initiation bending moment and the sectional bending-carrying capacity. This can be applied for the design practice.

The characteristics of bending collapse of aluminum/GFRP hybrid tube (알루미늄/GFRP 혼성튜브의 굽힘붕괴 특성)

  • 송민철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.84-87
    • /
    • 2000
  • Square tubes used for vehicle structure components have an important role on keeping its stiffness and preserving occupant safety in vehicle collision and rollover in which it experience axial collapse, bending collapse or both. Bending collapse, which absorbs kinetic energy of the impact and retains a survival space for the occupant, is a dominant failure mode in oblique collision and rollover. Thus, in this paper, the bending collapse characteristics such as the maximum bending moment and energy absorption capacity of the square tube replaced by light-weight material were evaluated and presented. The bending test of cantilever tubes which were fabricated with aluminum, GFRP and aluminum/ GFRP hybrid by co-curing process was performed. Then the maximum bending moment and the energy absorption capacity from the moment-angle curve were evaluated. Based on the test results, it was found that aluminum/ GFRP hybrid tube can show better specific energy absorption capacity compared to the pure aluminum or GFRP tube and can convert unstable collapse mode which may occur in pure GFRP tube to stable collapse mode like a aluminum tube in which plastic hinge is developed.

  • PDF

The bearing capacity of monolithic composite beams with laminated slab throughout fire process

  • Lyu, Junli;Zhou, Shengnan;Chen, Qichao;Wang, Yong
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.87-102
    • /
    • 2021
  • To investigate the failure form, bending stiffness, and residual bearing capacity of monolithic composite beams with laminated slab throughout the fire process, fire tests of four monolithic composite beams with laminated slab were performed under constant load and temperature increase. Different factors such as post-pouring layer thickness, lap length of the prefabricated bottom slab, and stud spacing were considered in the fire test. The test results demonstrate that, under the same fire time and external load, the post-pouring layer thickness and stud spacing are important parameters that affect the fire resistance of monolithic composite beams with laminated slab. Similarly, the post-pouring layer thickness and stud spacing are the predominant factors affecting the bending stiffness of monolithic composite beams with laminated slab after fire exposure. The failure forms of monolithic composite beams with laminated slab after the fire are approximately the same as those at room temperature. In both cases, the beams underwent bending failure. However, after exposure to the high-temperature fire, cracks appeared earlier in the monolithic composite beams with laminated slab, and both the residual bearing capacity and bending stiffness were reduced by varying degrees. In this test, the bending bearing capacity and ductility of monolithic composite beams with laminated slab after fire exposure were reduced by 23.3% and 55.4%, respectively, compared with those tested at room temperature. Calculation methods for the residual bearing capacity and bending stiffness of monolithic composite beams with laminated slab in and after the fire are proposed, which demonstrated good accuracy.

Seismic behavior of steel reinforced concrete cross-shaped column under combined torsion

  • Chen, Zongping;Liu, Xiang
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.407-420
    • /
    • 2018
  • Experiments were performed to explore the hysteretic performance of steel reinforced concrete (SRC) cross-shaped columns. Nine specimens were designed and tested under the combined action of compression, flexure, shear and torsion. Torsion-bending ratio (i.e., 0, 0.14, 0.21) and steel forms (i.e., Solid - web steel, T - shaped steel, Channel steel) were considered in the test. Both failure processes and modes were obtained during the whole loading procedure. Based on experimental data, seismic indexes, such as bearing capacity, ductility and energy dissipation were investigated in detail. Experimental results suggest that depending on the torsion-bending ratio, failure modes of SRC cross-shaped columns are bending failure, flexure-torsion failure and torsion-shear failure. Shear - displacement hysteretic loops are fuller than torque - twist angle hysteretic curves. SRC cross-shaped columns exhibit good ductility and deformation capacity. In the range of test parameters, the existence of torque does not reduce the shear force but it reduces the displacement and bending energy dissipation capacity. What is more, the bending energy dissipation capacity increases with the rising of displacement level, while the torsion energy dissipation capacity decreases.

Investigation on mechanical performance of flat steel plate-lightweight aggregate concrete hollow composite slab

  • Yang, Yong;Chen, Yang;Yang, Ye;Zeng, Susheng
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.329-340
    • /
    • 2019
  • An innovated type of the flat steel plate-lightweight aggregate concrete hollow composite slab was presented in this paper. This kind of the slab is composed of flat steel plate and the lightweight aggregate concrete slab, which were interfaced with a set of perfobond shear connectors (PBL shear connectors) with circular hollow structural sections (CHSS) and the shear stud connectors. Five specimens were tested under static monotonic loading. In the test, the influence of shear span/height ratios and arrangements of CHSS on bending capacity and flexural rigidity of the composite slabs were investigated. Based on the test results, the crack patterns, failure modes, the bending moment-curvature curves as well as the strains of the flat steel plate and the concrete were focused and analyzed. The test results showed that the flat steel plate was fully connected to the lightweight aggregate concrete slab and no obvious slippage was observed between the steel plate and the concrete, and the composite slabs performed well in terms of bending capacity, flexural rigidity and ductility. It was further shown that all of the specimens failed in bending failure mode regardless of the shear span/height ratios and the arrangement of CHSS. Moreover, the plane-section assumption was proved to be valid, and the calculated formulas for predicting the bending capacity and the flexural rigidity of the composite slabs were proposed on the basis of the experimental results.

An Experimental Study on the Engineering Properties of HPFRCC According to Kinds, Shapes and Volume Fraction of Fibers (섬유의 종류, 형상 및 치환율에 따른 HPFRCC의 공학적 특성에 관한 실험적 연구)

  • 김영덕;조봉석;김재환;김규용;최경렬;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.59-62
    • /
    • 2003
  • Kinds, shapes and fraction ratios of fibers have influence on properties of HPFRCC(High-Performance Fiver Reinforced Cementitious Concrete ) like bending strength, strain capacity and fracture toughness. For example, hydrophilic fibers have different chemical bond strength from hydrophobic fibers, fiber shapes influence on fiber pull-out and rupture, and fiber volume fraction influence on bending strength. In this study, to estimate influences of kinds, shapes and fraction ratios of fibers, we make HFRCC with 3 kind of fiber in various volume fraction of fiber and compare cracking, bending strength and fracture toughness. As the results, bending strength of HPFRCC was increased as fiber volume fraction was Increase and fiber tensile strength was increase, and strain capacity and fracture toughness of HFRCC was higher in fiber pull-out fracture than in fiber rupture fracture. And HFRCC showing pseudo strain hardening has higher fiber reinforce efficiency than others.

  • PDF

Bending Behavior of Nailed-Jointed Cross-Laminated Timber Loaded Perpendicular to Plane

  • Pang, Sung-Jun;Kim, Kwang-Mo;Park, Sun-Hyang;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.728-736
    • /
    • 2017
  • In this study, the bending behavior of cross-laminated timber (CLT) connected by nails were investigated. Especially, the load-carrying capacity of the nail-jointed CLT under out-of-plane bending was predicted by the lateral resistance of the used nails. Three-layer nail-jointed CLT specimens and a nail connection were manufactured by 30 mm (thickness) ${\times}$ 100 mm (width) domestic species (Pinus koraiensis) laminas and Ø$3.15{\times}82mm$ nails using a nail-gun. Shear test for evaluating the nail lateral resistance and bending test for evaluating the load-carrying capacity of the nail-jointed CLT under out-of-plane bending were carried out. As a result, two lateral resistance of the used nail, the 5% fastener offset value and the maximum value, were 913 N and 1,534 N, respectively. The predicted load-carrying capacity of the nail-jointed CLT by the 5% offset nail lateral resistance was similar to the yield points on the actual load-displacement curve of the nail-jointed CLT specimens. Meanwhile, the nail-jointed CLT specimens were not failed until the tension failure of the bottom laminas occurred beyond the maximum lateral resistance of the nails. Thus, the measured maximum load carrying capacities of the nail-jointed CLT specimens, approximately 12,865 N, were higher than the predicted values, 7,986 N, by the maximum nail lateral resistance. This indicates that the predicted load-carrying capacity can be used for designing a structural unit such as floor, wall and roof able to support vertical loads in a viewpoint of predicting the actual capacities more safely.

Rotational capacity of H-shaped steel beams under cyclic pure bending

  • Jia, Liang-Jiu;Tian, Yafeng;Zhao, Xianzhong;Tian, Siyuan
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.123-140
    • /
    • 2019
  • This paper presents experimental study on effects of width-to-thickness ratio and loading history on cyclic rotational capacity of H-shaped steel beams subjected to pure bending. Eight Class 3 and 4 H-shaped beams with large width-to-thickness ratios were tested under four different loading histories. The coupling effect of local buckling and cracking on cyclic rotational capacity of the specimens was investigated. It was found that loss of the load-carrying capacity was mainly induced by local buckling, and ductile cracking was a secondary factor. The width-to-thickness ratio plays a dominant effect on the cyclic rotational capacity, and the loading history also plays an important role. The cyclic rotational capacity can decrease significantly due to premature elasto-plastic local buckling induced by a number of preceding plastic reversals with relative small strain amplitudes. This result is mainly correlated with the decreasing tangent modulus of the structural steel under cyclic plastic loading. In addition, a theoretical approach to evaluate the cyclic rotational capacity of H-shaped beams with different width-to-thickness ratios was also proposed, which compares well with the experimental results.

Elastic flexural and torsional buckling behavior of pre-twisted bar under axial load

  • Chen, Chang Hong;Yao, Yao;Huang, Ying
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.273-283
    • /
    • 2014
  • According to deformation features of pre-twisted bar, its elastic bending and torsion buckling equation is developed in the paper. The equation indicates that the bending buckling deformations in two main bending directions are coupled with each other, bending and twist buckling deformations are coupled with each other as well. However, for pre-twisted bar with dual-axis symmetry cross-section, bending buckling deformations are independent to the twist buckling deformation. The research indicates that the elastic torsion buckling load is not related to the pre-twisted angle, and equals to the torsion buckling load of the straight bar. Finite element analysis to pre-twisted bar with different pre-twisted angle is performed, the prediction shows that the assumption of a plane elastic bending buckling deformation curve proposed in previous literature (Shadnam and Abbasnia 2002) may not be accurate, and the curve deviates more from a plane with increasing of the pre-twisting angle. Finally, the parameters analysis is carried out to obtain the relationships between elastic bending buckling critical capacity, the effect of different pre-twisted angles and bending rigidity ratios are studied. The numerical results show that the existence of the pre-twisted angle leads to "resistance" effect of the stronger axis on buckling deformation, and enhances the elastic bending buckling critical capacity. It is noted that the "resistance" is getting stronger and the elastic buckling capacity is higher as the cross section bending rigidity ratio increases.

Study on mechanical performance of composite beam with innovative composite slabs

  • Yang, Yong;Yu, Yunlong;Zhou, Xianwei;Roeder, Charles W.;Huo, Xudong
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.537-551
    • /
    • 2016
  • A new type of composite beam which consists of a wide flange steel shape beam and an innovative type of composite slab was introduced. The composite slab is composed of concrete slab and normal flat steel plates, which are connected by perfobond shear connectors (PBL shear connectors). This paper describes experiments of two large-scale specimens of that composite beam. Both specimens were loaded at two symmetric points for 4-point loading status, and mechanical behaviors under hogging and sagging bending moments were investigated respectively. During the experiments, the crack patterns, failure modes, failure mechanism and ultimate bending capacity of composite beam specimens were investigated, and the strains of concrete and flat steel plate as well as steel shapes were measured and recorded. As shown from the experimental results, composite actions were fully developed between the steel shape and the composite slab, this new type of composite beams was found to have good mechanical performance both under hogging and sagging bending moment with high bending capacity, substantial flexure rigidity and good ductility. It was further shown that the plane-section assumption was verified. Moreover, a design procedure including calculation methods of bending capacity of this new type of composite beam was studied and proposed based on the experimental results, and the calculation methods based on the plane-section assumption and plastic theories were also verified by comparisons of the calculated results and experimental results, which were agreed with each other.