• Title/Summary/Keyword: Bending

Search Result 8,628, Processing Time 0.04 seconds

Bond strength of fiber reinforced composite after repair (섬유 강화 컴포지트의 수리 후 접합 강도)

  • Kim, Min-Jung;Kim, Kyung-Ho;Choy, Kwang-Chul
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.188-197
    • /
    • 2006
  • Fiber reinforced composite (FRC) is usually used as a connector joining a few teeth into one unit in orthodontics. However, fracture often occurs during the two to three years of the orthodontic treatment period due to repeated occlusal loading or water sorption in the oral environment. We simulated the repair by overlapping and attaching portions of two FRC strips in the middle and performed a three-point bending test to investigate the changes of the repair strength among the different FRC groups. The specimens were grouped according to the overlapping lengths of the two FRC strips, which were 1, 2, 3 and 4 mm (group E1, E2, E3 and E4, respectively) and the control group consisted of unrepaired, intact FRC strips. Each group consisted of 6 specimens and were cured with a light emitting diode curing unit. Group E4 showed the highest maximum loads of 2.67 N, then the control group (2.39 N), group E3 (2.35 N), E2 (2.10 N), and E1 (1.75 N) in decreasing order. Group E4 also showed the highest stiffness, which was 2.32 N/mm, however, the stiffness of group E3 (2.06N/mm) was higher than that of the control group (1.88 N/mm). According to the visual examination, the specimens tended to be bent rather than being fractured into two pieces with an increased length of overlapping portions. The above results suggest that a minimum overlapping length of 3 mm was necessary to obtain an adequate repair of a 10 mm length of FRC connector. In addition, the critical section adjacent to the joint area, where the thickness decreased abruptly, should be reinforced with flowable resin to minimize the bending tendency.

A Study on Wafer-Level 3D Integration Including Wafer Bonding using Low-k Polymeric Adhesive (저유전체 고분자 접착 물질을 이용한 웨이퍼 본딩을 포함하는 웨이퍼 레벨 3차원 집적회로 구현에 관한 연구)

  • Kwon, Yongchai;Seok, Jongwon;Lu, Jian-Qiang;Cale, Timothy;Gutmann, Ronald
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.466-472
    • /
    • 2007
  • A technology platform for wafer-level three-dimensional integration circuits (3D-ICs) is presented, and that uses wafer bonding with low-k polymeric adhesives and Cu damascene inter-wafer interconnects. In this work, one of such technical platforms is explained and characterized using a test vehicle of inter-wafer 3D via-chain structures. Electrical and mechanical characterizations of the structure are performed using continuously connected 3D via-chains. Evaluation results of the wafer bonding, which is a necessary process for stacking the wafers and uses low-k dielectrics as polymeric adhesive, are also presented through the wafer bonding between a glass wafer and a silicon wafer. After wafer bonding, three evaluations are conducted; (1) the fraction of bonded area is measured through the optical inspection, (2) the qualitative bond strength test to inspect the separation of the bonded wafers is taken by a razor blade, and (3) the quantitative bond strength is measured by a four point bending. To date, benzocyclobutene (BCB), $Flare^{TM}$, methylsilsesquioxane (MSSQ) and parylene-N were considered as bonding adhesives. Of the candidates, BCB and $Flare^{TM}$ were determined as adhesives after screening tests. By comparing BCB and $Flare^{TM}$, it was deduced that BCB is better as a baseline adhesive. It was because although wafer pairs bonded using $Flare^{TM}$ has a higher bond strength than those using BCB, wafer pairs bonded using BCB is still higher than that at the interface between Cu and porous low-k interlevel dielectrics (ILD), indicating almost 100% of bonded area routinely.

Effect of fire - retardant treatment and redrying on the mechanical properties of radiata pine (내화처리(耐火處理) 및 재건조(再乾操)가 라디에타소나무의 역학적(力學的) 성질(性質)에 미치는 영향(影響))

  • Chung, Doo-Jin;Jo, Jae-Sung;Yun, Ki-Eon;Kim, Jae-Jin;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.37-49
    • /
    • 1999
  • The effect of fire-retardant treatment and redrying on the mechanical properties of radiata pine sapwood were evaluated. Small, clear specimens were treated with three different fire-retardant(FR) chemicals, borax-boric acid(BRX), minalith(MIN), and pyresote(PYR), with target retentions of 30 and 60kg/$m^3$, and then redried at maximum dry-bulb temperature of $25^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ or $110^{\circ}C$. Each specimen, including untreated and water-treated controls, was tested in static bending and in compression parallel to grain. The extent of strength reduction was dependent on the type of FR chemicals, retention, and redrying temperature, and a highly significant interaction existed between FR treatment and redrying temperature. Modulus of rupture(MOR) and work to maximum load(WML) were significantly decreased by FR treatment and redrying. None of three FR chemicals adversely affect modulus of elasticity (MOE) and maximum crushing strength(MCS). MOE of BRX treatment and MCS of both BRX and PYR treatment increased significantly compared to untreated controls. No significant differences existed between retention levels except for MOE and MCS of some combinations of FR chemicals and redrying temperatures. Although MOE and MCS was not significantly affected by any of the redrying temperatures, these properties were generally decreased with the increase in redrying temperature. The significant reduction in MOR and WML was observed in BRX treatment when dried at temperatures of $60^{\circ}C$ and above, and in MIN and PYR treatment when dried at temperatures of $80^{\circ}C$ and above. Consequently, BRX-treated radiata pine should not be redried at temperatures >$60^{\circ}C$, and MIN- and PYR-treated radiata pine should not be redried at temperatures > $80^{\circ}C$ where bending strength and energy-related properties are important design considerations.

  • PDF

Experimental Studies on Influence of Foaming Agents on the Properties of Mortar (기포제가 모르터의 제성질에 미치는 영향에 관한 실험적 연구)

  • Sung, Chan-Yong;Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.1
    • /
    • pp.46-61
    • /
    • 1985
  • This study was performed to obtain the basic data which can be applied to the use of foaming mortars. The data was based on the properties of foaming mortars depending upon various mixing ratios and addings to compare those of cement mortar. The foaming agents which was used at this experiment were pre-foamed type and mix-foaming type which is being used as mortar structures. The foaming mortar, mixing ratios of cement to fine aggregate were 1:1, 1: 2, 1 : 3 and 1 : 4. The addings of foaming agents were 0.0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0% of cement weight. The results obtained were summarized as follows; 1. At the mixing ratio of 1 : 1, the lowest water-cement ratios were showed by foaming mortars, respectively. But it gradually was increased in poorer mixing ratio and decreased in more addition of foaming agent. The water-cement ratios were decreased up to 1. 8~22. 0% by G, 2. 2~24. 1 % by U and 0. 7~53. 1% by J foaming mortar than cement mortar. 2, At the mixing ratio of 1 : 1, the highest bulk densities were showed by foaming mortars, respectively. But, it gradually was decreased in poorer mixing ratio and more addition of foaming agent. The bulk densities were decreased up to 1. 4~20. 7% by G, 2. 3~23. 7% by U and 26. 5~56. 5% by J foaming mortar than cement mortar. Therefore, foaming mortar could be utilized to the constructions which need low strengths. 3. At the mixing ratio of 1:1, the lowest absorption rates were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Specially, according to the absorption rate when immersed in 72 hours, the absorption rates were showed up to 1. 01~1. 24 times by G, 1. 03~1. 58 times by U and 1. 10~5. 91 times by J foaming mortar than cement mortar. It was significantly higher at the early stage of immersed time than cement mortar. 4. At the mixing ratio of 1:1, the lowest air contents were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Air contents were contented up to 4. 0~17. 2 times by G, 5. 2~23. 2 times by U and 23. 8~74. 5 times by J foaming mortar than cement mortar. 5. At the mixing ratio of 1 : 1, the lowest decreasing rates of strengths were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Specially, the strengths of 28 days were decreased 0. 4~2. 2% than those of 7 days by foaming mortar, respectively. Also, the correlations between compressive and tensile strength, compressive and ending strength, tensile and bending strength were highly significant as a straight line shaped, respectively. 6. The correlations between absorption rate, air content, compressive strength and bulk density, absorption rate, compressive strength and air content were highly significant, respectively. The multiple regression equations of water-cement ratio, bulk density, absorption ate, air content, compressive strength, tensile strength and bending strength were computed depending on a function of mixing ratio and addition of foaming agent. It was highly significant, respectively. 7. At the mixing ratio of 1 : 1, the highest strengths were showed by cement mortar and foaming mortars, by chemical reagents. But, it gradually was decreased in poorer mixing ratio. The decreasing rates of strengths were in order of H $_2$S0 $_4$, HNO$_3$ and HCI, J,U,G foaming mortar and cement mortar. Specially, at the each mixing ratio, each chemical reagent and 3.0% of foaming agent, J foaming mortar was collapsed obviously. Therefore, for the structures requiring acid resistence, adding of foaming agent should be lower than 3.0%.

  • PDF

Bending Creep Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards (목재와 목질보드 복합적층재의 휨 크리프 성능)

  • Park, Han-Min;Kang, Dong-Hyun;Choi, Yoon-Eun;Ahn, Sang-Yeol;Ryu, Hyun-Su;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, to study an effective use and improve strength performances of woods and wood-based materials, three-ply hybrid laminated woods which are composed of spruce in the face and three kinds of wood-based boards (MDF, PB, OSB) in the core were manufactured, and the effect of constitution elements used for the core laminae on bending creep performances was investigated. The shape of creep curves showed exponential function plots which the upper right side was increased, and differed among the kinds of wood-based boards used for the core laminae of hybrid laminated wood. The creep deformation perpendicular to the grain of faces of hybrid laminated woods was in order $C_{\perp}$(P) > $C_{\perp}$(M) > $C_{\perp}$(O) with PB, MDF and OSB in the core, respectively. It was found that the creep deformation arranged with OSB in the core had 2 times smaller than those arranged with MDF and PB in the core. By hybrid laminating, the creep deformation of spruce perpendicular to the grain was markedly decreased. On the other hand, the creep deformation parallel to the grain of the faces ($C_{\parallel}$ type) of hybrid laminated woods was in order $C_{\parallel}$(P) > $C_{\parallel}$(O) > $C_{\parallel}$(M) with PB, OSB and MDF in the core. The ratios among three hybrid laminated woods were considerably decreased, especially the difference between $C_{\parallel}$(P) and $C_{\parallel}$(O) hybrid laminated woods arranged with PB and OSB in the core was very small. These values showed 0.108~0.464 times smaller than creep deformation of three wood-based boards and it was found that creep deformation of three wood-based boards was considerably decreased by hybrid laminating. Creep anisotropy of hybrid laminated woods was greater in creep deformation than in initial deformation, whereas it was found that the values was much smaller than that of spruce parallel laminated woods.

Performance of Direct Seeded Rice in Ridged Dry Soil at Different Seeding Methods and Seeding Rates (벼 건답휴립직파재배에서 파종양식과 파종량에 따른 생육과 수량)

  • 이석순;백준호;김태주
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.6
    • /
    • pp.514-520
    • /
    • 1992
  • Performance of direct seeded paddy rice in ridged dry soil was evaluated at different seeding methods (broadcasting, drilling, and seeding in group) and seeding rates (4, 6, and 8kg /10a). The number of maximum tillers at broadcasting and drilling of seeds was higher than that at seeding in group. At broadcasing and drilling the number of maximum tillers at seeding rate of 6kg /10a was greater than that at 4 or 8kg /10a, but at seeding in group the number of maximum tillers increased with seeding rates. Among the seeding methods there were no differences in the number of seedlings per unit area, culm and panicle lengths, and productive tiller ratio, but heading date at seeding in group was delayed by a day compared with broadcasting or drilling. At heading stage leaf area index(LAI) and dry matter production at broadcasting of seeds were higher compared with drilling and seeding in group, but light transmission ratio at drilling and seeding in group was higher than that at broadcasting of seeds. Although the number of seedlings increased with seeding rates, LAI and dry matter production at heading stage, culm and panicle lengths, and productive tiller ratio were not different among the seeding rates. There were no differences in the number of panicles and spikelets per unit area, 1,000 grain weight, yield, and harvest index among the seeding methods. The number of spikelets per panicle at seeding in group was higher, but percent ripened grains was lower compared with broadcasting and drilling. There were no significant differences in the number of panicles and spikelets per panicle and unit area, percent ripened grains, and harvest index among the seeding rates, but yield at seeding rate of 6kg /10a was higher than at 4 or 8kg /10a. There were no significant differences in tiller length, bending moment, and fresh weight of tiller among the seeding methods. Breaking strength was lower in the order of seeding in group, drilling, and broadcasting of seeds. However, lodging index was similar among the seeding rates and lodging was not occurred in the field. There was a significant interaction in the cellulose, hemicellulose, and lignin contents of culm base between seeding methods and seeding rates.

  • PDF

PHYSICAL PROPERTIES AND SURFACE TOPOGRAPHY OF ORTHODONTIC STAINLESS STEEL WIRES : COMPARING A NEW KOREAN PRODUCT WITH OTHERS FROM FOREIGN COMPANIES (여러 스테인레스 스틸 호선의 물성 및 표면의 비교)

  • Lee, Sung-Ho;Kim, Tae-Woo;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.149-157
    • /
    • 2001
  • The purpose of this study was to investigate the property of a new Korean stainless steel wire(Jinsung Ind.) comparing with other foreign Products. Five types of stainless steel wires (Standard, Resilient, HI-T of Unitek, Stainless steel of Ormco and Jinsung Ind.) in 0.016x0.022 and 0.019x0.02 were tested to observe for Composition analysis, size difference, tensile properties, flexure bending property, tortion property, surface hardness and surface topography by means of SEM. The findings suggest that: 1. In maximum tensile strength of tensile properties, Unitek Hi-T showed the greatest value, followed by Unitek Resilient, Jinsung Stainless Steel, Ormco Stainless Steel, Unitek Standard in 0.016x0.022, and Unitek Hi-T showed highest value, followed by Jinsung Stainless Steel, Ormco Stainless Steel, Unitek Resilient, Unitek Standard in 0.019x 0.025. 2. In elongation rate, Unitek Standard showed the greatest value, fellowed by Ormco Stainless Steel, Unitek Hi-T, Unitek Resilient, Jinsung Stainless Steel in 0.016x0.022, and Unitek Hi-T showed the highest value, followed by Unitek Standard, Ormco Stainless Steel, Jinsung Stainless Steel, Unitek Resilient in 0.019x0.025. 3. In modulus of elasticity, Jinsung Stainless Steel showed the greatest value, followed by Unitek Hi-T, Unitek Resilient, Ormco Stainless Steel, Unitek Standard in 0.016x0.022, and Unitek Resilient showed the highest value followed by Jinsung Stainless Steel, Ormco Stainless Steel, Unitek Hi-T, Unitek Standard in 0.019x0.025. 4. In bending fatigue test, Jinsung Stainless Steel showed the greatest fracture resistance, followed by Unitek Hi-T, Unitek Standard, Unitek Resilient, Ormco Stainless Steel in 0.016x0.022, and Unitek Hi-T showed the greatest fracture resistance followed by Jinsung Stainless Steel, Unitek Resilient, Unitek Standard, Ormco Stainless Steel in 0.019x0.025. 5. In twist test, Unitek Resilient showed the greatest fracture resistance, followed by Jinsung Stainless Steel, Unitek Hi-7, Ormco Stainless Steel, Unitek Standard in 0.016x0.022, and Jinsung showed the greatest fracture resistance, followed by Unitek Resilient, Unitek Standard, Ormco Stainless Steel, Unitek Hi-T. 6. In surface topography, every products showed indentation and pitting. Jinsung stainless steel wire showed long thin indentation and relatively smooth surface. Unitek wires showed indentation and pitting and Ormco wire showed a lot of irregular pittings.

  • PDF

Studies on Creep Behavior for Rice Stalks (벼줄기의 크리이프 거동(擧動)에 관한 연구)

  • Huh, Yun Kun;Kim, Sung Rai;Lee, Sang Woo
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • All agricultural crops and products should be cultured, harvested, handled and processed by the proper mechanical methods in the mechanized farming systems. Agricultural crops might be injured or deformed through various working stages due to static or dynamic forces of machines. Mechanical forces had to be applied with proper degrees to the agricultural crops in incoincidence with properties of crops without any damage of crops so as to increase the work efficiency qualitatively. Knowledges of mechanical properties of agricultural materials are essential to prevent of agricultural crops in relation with mechanical farming system. This study was carried out to examine and analyze the creep behavior of the rice stalk on growing and harvesting periods by mechanical model with computer measurement system in radial directional compressive force and bending force. The creep behavior of the rice stalk could be predicted precisely and its results approached closely to the measured values. The creep behaviors were increased greatly with increase of compressive force, namely, the steady state creep behavior occurred at the force less then 25N and the logarithmic creep behavior at the force bigger than 30N. The instantaneous elastic modulus $E_o$ and the retardation time ${\tau}_K$ were increased together with increase of applied forces, meanwhile the retarded elastic modulus $E_r$ and viscosity ${\eta}_v$ were decreased with increase of applied forces in mechanical model being expected the creep behavior in relation with the level of applied forces, which was well explained that the rice stalk might be visvo-elastic material. In the creep test along the stalk portion with compressive force and bending force, the intermediate portion showed greatest values and also the lower portion showed the least values, which implied that the intermediate portions of rice stalk were very weak. The steady state creep behavior occured at the intermediate portion and the upper portion in the rice stalk at the compressive force larger than 25.0N, which showed the possibility of injury due to external forces.

  • PDF

The fracture resistance of heat pressed ceramics with wire reinforcement (금속선 강화에 따른 열 가압 도재의 파절저항)

  • Jo, Deuk-Won;Dong, Jin-Keun;Oh, Sang-Chun;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • Statement of problem: Ceramics have been important materials for the restoration of teeth. The demands of patients for tooth-colored restorations and the availability of various dental ceramics has driven the increased use of new types of dental ceramic materials. Improved physical properties of theses materials have expanded its use even in posterior crowns and fixed partial dentures. However, ceramic still has limitation such as low loading capability. This is critical for long-span bridge, because bridge is more subject to tensile force. Purpose: The wire reinforced ceramic was designed to increase the fracture resistance of ceramic restoration. The purpose of this study was to evaluate the fracture resistance of wire reinforced ceramic. Material and methods: Heat pressed ceramic(ingot No.200 : IPS Empress 2, Ivoclar Vivadent, Liechtenstein) and Ni-Cr wire(Alfa Aesar, Johnson Matthey Company, USA) of 0.41 mm diameter were used in this study. Five groups of twelve uniform sized ceramic specimens(width 4 mm, thickness 2 mm, length 15 mm) were fabricated. Each group had different wire arrangement. Wireless ceramic was used as control group. The experimental groups were divided according to wire number and position. One, two and three strands of wires were positioned on the longitudinal axis of specimen. In another experimental group, three strands of wires positioned on the longitudinal axis and five strands of wires positioned on the transverse axis. Three-point bending test was done with universal testing machine(Z020, Zwick, Germany) to compare the flexural modulus, flexural strength, strain at fracture and fracture toughness of each group. Fractured ceramic specimens were cross-sectioned with caborundum disc and grinded with sandpaper to observe interface between ceramic and Ni-Cr wire. The interface between ceramic and Ni-Cr wire was analyzed with scanning electron microscope(JSM-6360, JEOL, Japan) under platinum coating. Results: The results obtained were as follows: 1. The average and standard deviation in flexural modulus, flexural strength and fracture toughness showed no statistical differences between control and experimental groups. However, strain was significantly increased in wire inserted ceramics(P<.001). 2. Control group showed wedge fracture aspects across specimen, while experimental groups showed cracks across specimen. 3. Scanning electron microscopic image of cross-sectioned and longitudinally-sectioned specimens showed no gap at the interface between ceramic and Ni-Cr wire. Conclusion: The results of this study showed that wire inserted ceramics have a high strain characteristic. However, wire inserted ceramics was not enough to use at posterior area of mouth in relation to flexural modulus and flexural strength. Therefore, we need further studies.

A Study on Applicability of Stabilizing Pile to Foundation Soil of Slope with Various Strength Parameters (사면하부지반의 강도정수에 따른 억지말뚝 적용성 연구)

  • Lee, Seung-Hyun;Jang, In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.331-337
    • /
    • 2016
  • Several foundation soil conditions below a homogeneous sand slope were assumed and slope stability analyses were conducted to determine the soil condition, in which a stabilizing pile can be used to increase the factor of safety against sliding. The assumed heights of the sand slope were 5m and 10m. For a 5m slope height, a stabilizing pile can be used in the foundation soil with a $15^{\circ}$ internal friction angle and a cohesion of 10kPa. For a 10m slope height, a stabilizing pile can be used in the foundation soil with a $20^{\circ}$ internal friction angle and a cohesion of 10kPa and a stabilizing pile can be used in the foundation soil with a $0^{\circ}$ internal friction angle and 40kPa, 45kPa and 50kPa of cohesion. According to the analysis results of stabilizing pile-reinforced foundation soil, the length of the stabilizing pile and magnitude of the maximum bending moment were strongly affected by the internal friction angle of the foundation soil. The lengths of stabilizing pile, for an internal friction angle of $0^{\circ}$ were 4.6, 8.0 times greater than those with an internal friction angle of $5^{\circ}$. The magnitude of the maximum bending moment of the stabilizing pile for an internal friction angle of $0^{\circ}$ was 24.6 times greater than that for an internal friction angle of $5^{\circ}$. Practically, a stabilizing pile cannot be used for foundation soil with an internal friction angle of $0^{\circ}$. Considering the results derived from this study, the effects of a stabilizing pile can be maximized for soft foundation soil that is embanked with a slow construction speed.