• Title/Summary/Keyword: Bending

Search Result 8,649, Processing Time 0.04 seconds

Manufacture and Performance Evaluation of Medium-density Fiberboard Made with Coffee Bean Residue-Wood Fiber (커피박과 목섬유를 이용한 중밀도섬유판의 제조 및 성능 평가)

  • Yang, In;Lee, Kwang-Hyung;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.293-301
    • /
    • 2013
  • This study discusses the feasibility of coffee bean residue as a raw material of medium-density fiberboard (MDF). In this relation, the effect of coffee bean residue known as an absorbent material on the physical and mechanical properties of MDF manufactured at its different addition level. Coffee bean residue which is a by-product of coffee mill and large amount of waste left over after processing for instant coffee was added at the level of 3, 6, and 9% on dry basis and urea formaldehyde resin was used as the adhesive. The MDF made with mixture of wood fiber and coffee bean residue was tested for physical and mechanical properties as well as formaldehyde emission. The bending strength and internal bonding strength of the MDF made with mixture of wood fiber-coffee bean residue were higher than that of the KS standard in randomized mat structure type, but not in layered mat structure type. Also, the physical properties of MDF made with mixture of wood fiber-coffee bean residue showed a considerable improvement in thickness swelling over the commercial MDF. More importantly, the formaldehyde emission rate of MDF made with mixture of wood fiber-coffee bean residue met the KS standard and was close to that of commercial MDF. These results showed the feasibility of coffee bean residue as a raw material for the production of environmentally-friendly MDF. Additional works on adhesive-coffee bean compatibility, improvement of moisture absorption effect and reduction the formaldehyde emission rate by carbonization of coffee bean residue may be required.

A Study on the Crease Recovery Behavior of Core-spun Yarn Woven Fabrics (코어방적사직물의 구김회복거동에 관한 연구)

  • Kwon Ok-Kyung;Sung Su-Kwang;Kim Hyo-Dae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.3 s.31
    • /
    • pp.259-267
    • /
    • 1989
  • In this paper, the fabric specimen undergoes repeated laundering under given condition. After this cyclic laundering was applied, the crease recoveries of the specimen were measured using shirley crease revovery tester in order to evaluate the effect of factors at given condition during crease deformation. 5 samples of grey plain cloth were desized, alkali-scoured, bleached, whased with water, and air-dried. All tests were made on samples preconditioned to $65\%\;RH\;and\;20^{\circ}C$. The experimental results were analysed statistically to relate crease recoveries and the properties of smaples, recovery periods (time) of crease. Furthermore, the crease recoveries of core-spun yarn woven fabrics were discussed in comparison with those values for $100\%$ combed cotton yarn woven fabric and $65\%$ polyester $35\%$ carded cotton blended yarn woven fabric. The results obtained are as follows; 1. Regardless of materials, remarkable decrease are observed in crease recoveries about 1-5 cycles of the repeated laundering, but slack decrease are observed in crease recoveries after 5 cycle of the re-peated laundering. 2. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to recovery periods (t) of crease as follows; log$\alpha$=0.01415 log t+2.1168 ($r^2=0.94$) 3. Core-spun yarn woven fabrics were superior to $100\%$ combed cotton yarn woven fabrics and $65\%$ polyester $35\%$ carded cotton blended yarn woven fabric in crease recoveries. 4. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to cover factor (CF), thickness (T) at pressure 0.5 $gf/cm^2$, weight (W) as follows; log$\alpha$=-0.3482 log CF-0.4924 log T-0.4727 W+2.4243 ($r^2=0.88$) 5. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to 2HB/B, 2HB/W, $\sqrt[3]{B/W}$, WC/T which are concerning to formation of weared clothes and bending Iran formation behavior as follows: log $\alpha$=0.0091 2HB/B+0.4667 2HB/W+0.0185 $\sqrt[3]{B/W}$+0.0114 WC/T+1.8433 ($r^2=0.86$)

  • PDF

Lodging Pattern of Rice Plant in Broadcast-Seeded and Hand -Transplanted Cultivation (벼 담수표면직파재배와 손이앙재배의 도복발생 발생 양상)

  • Kim, Je-Kyu;Lee, Moon-Hee;Oh, Yun-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.3
    • /
    • pp.219-227
    • /
    • 1993
  • Broadcast-seeded rice in submerged paddy frequently lodge in the field. In general, the causes of lodging in rice cultivation differ with different cultural methods. This study was conducted to investigate the causes of lodging in broadcast-seeded rice (BSR) and hand-transplanted rice (HTR) under four nitrogen (N) levels. Lodging in BSR was mainly a root lodging due to shallow root distribution, while that in HTR showed a bending type owing to deep rooting system. At the upper soil layer (0-5cm from the surface of ground) the root distribution of BSR (65.2%) was much larger than that of HTR (51.6%), whereas at the 5-10cm soil layer the root distribution of BSR (18.5%) was much smaller than that of HTR (28.0%). The depth of buried culm base was much shallower in BSR (1.2cm) than in HTR (4.0cm). The plant height, fresh weight, lodging index, culm diameter and thickness in HTR were much greater than those in BSR, and the breaking strength of lower internode was similar in the two cultivation methods indicating that HTR would have more lodging causes than BSR. In spite of . the more advantages to lodging resistance in BSR it severely lodged in the field. The main lodging-inducing factors of BSR were the shallow root distribution and shallow depth of buried culm base. Besides these, the higher ratio of gravity center of culm was an important factor. This result suggested that for the fundamental prevention of lodging in BSR, an ideotype of rice plant with ' a deep-rooted behavior ' should be developed.

  • PDF

Flexible InGaP/GaAs Double-Junction Solar Cells Transferred onto Thin Metal Film (InGaP/GaAs 이중접합 기반의 고효율 플렉시블 태양전지 제조기술 연구)

  • Moon, Seungpil;Kim, Youngjo;Kim, Kangho;Kim, Chang Zoo;Jung, Sang Hyun;Shin, Hyun-Beom;Park, Kyung Ho;Park, Won-Kyu;Ahn, Yeon-Shik;Kang, Ho Kwan
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.108-113
    • /
    • 2016
  • III-V compound semiconductor based thin film solar cells promise relatively higher power conversion efficiencies and better device reliability. In general, the thin film III-V solar cells are fabricated by an epitaxial lift-off process, which requires an $Al_xGa_{1-x}As$ ($x{\geq}0.8$) sacrificial layer and an inverted solar cell structure. However, the device performance of the inversely grown solar cell could be degraded due to the different internal diffusion conditions. In this study, InGaP/GaAs double-junction solar cells are inversely grown by MOCVD on GaAs (100) substrates. The thickness of the GaAs base layer is reduced to minimize the thermal budget during the growth. A wide band gap p-AlGaAs/n-InGaP tunnel junction structure is employed to connect the two subcells with minimal electrical loss. The solar cell structures are transferred on to thin metal films formed by Au electroplating. An AlAs layer with a thickness of 20 nm is used as a sacrificial layer, which is removed by a HF:Acetone (1:1) solution during the epitaxial lift-off process. As a result, the flexible InGaP/GaAs solar cell was fabricated successfully with an efficiency of 27.79% under AM1.5G illumination. The efficiency was kept at almost the same value after bending tests of 1,000 cycles with a radius of curvature of 10 mm.

Recycle of the Glass Fiber Obtained from the Roving Cloth of FRP I: Study for the Physical Properties of Fiber-reinforced Mortar (폐 FRP 선박의 로빙층에서 분리한 유리섬유의 재활용 I: 섬유강화 모르타르의 물성에 관한 연구)

  • Yoon, Koo-Young;Kim, Yong-Seop;Lee, Seung-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.102-106
    • /
    • 2007
  • While the effort has been made in recycling the FRP (Fiber Reinforced Plastic) used for the medium-to-small size ships, researchers try to find out the methods more favorable for the environments and more value-added. In respect to the fact that the FRP consists of two types of layers, roving and mat, differentiated by the 2-dimensional structure, our group was able to separate the layers of FRP instead of grinding it. The roving cloth was cut to the long glass fibers (about 50 mm long; calling it 'F-fiber' afterwards). F-fiber showed increasing tensile strength and chemical-resistance possibly due to the remained resin (about 25% by weight). In this experiment fiber-reinforced mortars are made of the F-fiber as a recycling method of FRP. The mortar containing 2% (v/v) F-fiber results in 34.6% increment of bending strength from the standard after 28 day curing. The resulting strength is similar to that of the mortar with imported polyvinyl fiber P-54. These results imply that F-fiber can be applied to the 'fiber reinforced mortar' and furthermore may be a substitute for the imported fibers.

  • PDF

Mechanical properties and sensibility of Tencel Jacquard fabrics treated with Ginkgo biloba extract and silicon softener (은행나무추출액과 실리콘유연제를 처리한 침장용 텐셀 자카드 직물의 역학적 특성변화와 감성평가)

  • Jang, Yeon-Ju;Lee, Jung-Soon
    • Science of Emotion and Sensibility
    • /
    • v.13 no.2
    • /
    • pp.327-336
    • /
    • 2010
  • The purposes of this study are to evaluate mechanical properties and sensibility of tencel jacquard fabrics treated with ginkgo biloba extract and silicon softener, and to contribute to the research and development of the bedclothes made of the tencel jacquard fabrics. Mechanical properties and objective fabric hand evaluation were measured by using KES-FB system. Subjective sensibilities such as sensory, touch, and purchasing preference were estimated by using blind field test. The tensile properties such as EM, WT, and RT of tencel jacquard fabrics treated with ginkgo biloba extract and silicon softener showed increase. Bending properties and shear properties were decreased, but compression properties were increased compared to untreated fabric. With ginkgo biloba extract and silicon softener treatment, thickness and weight were increased. Therefore, tencel jacquard fabrics became more stretchable, softer, and bulkier than untreated fabrics. Consequently, THV of tencel jacquard fabrics treated with ginkgo biloba extract and silicon softener were increased. When fabrics were treated sequentially with ginkgo biloba extract and silicon softener, fabrics were estimated softer, more flexible, and bulkier than untreated fabrics. Also, tencel jacquard fabrics treated with ginkgo biloba extract and silicon softener were estimated to have good touch and preference.

  • PDF

Analysis on the Depressing Force to the Cornea by Fitted Spherical Contact Lens (구면 콘택트렌즈의 피팅에 따른 각막 부착력 해석)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.1
    • /
    • pp.97-106
    • /
    • 2011
  • Purpose: This review article was written to theoretically compare the depressing force (pressure, adhesion) to the cornea between when the spherical lenses were being tightly and flat fitted. Methods: Mathematical equations and their numerical solution programs (model) were formulated to calculate the depressing (adhesion) force to the cornea by both the tightly and flat fitted contact lenses. Based on this proposed model the effects of parameters characterizing a contact lens such as BCs, diameters, edge shape and corneal shape (ratio of long and short corneal axis, p) on the depressing force to the cornea were predicted/analyzed in both tightly and flat fitting regimes. Results: Corneal adhesion increased as the corneal p-value increased. Adhesion increase caused by the increased p-value was much larger in flat fitted case than in tight fitted one. Corneal adhesion reduced abruptly as the BC increased in flat fitting regimes while the adhesion rise was insignificant in tight fitting ones. Reduction in corneal adhesion due to lens-size increase was predicted to be insignificant in both tight and flat fitting regimes. Both the lens edge shape (edge angle) and thickness were relevant only in tight fitting regime. Corneal adhesion increased as the increased with tight-fitted lenses. As the thickness of tight fitted lenses increased, corneal adhesion inversely decreased. Conclusions: The two most significantly affecting the depressing force to cornea were found to be the degree of corneal bending toward the periphery and the BCs of lenses.

Wind loads and load-effects of large scale wind turbine tower with different halt positions of blade

  • Ke, Shitang;Yu, Wei;Wang, Tongguang;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.559-575
    • /
    • 2016
  • In order to investigate the influence of different blade positions on aerodynamic load and wind loads and load-effects of large scale wind turbine tower under the halt state, we take a certain 3 MW large scale horizontal axis three-blade wind turbine as the example for analysis. First of all, numerical simulation was conducted for wind turbine flow field and aerodynamic characteristics under different halt states (8 calculating conditions in total) based on LES (large eddy simulation) method. The influence of different halt states on the average and fluctuating wind pressure coefficients of turbine tower surface, total lift force and resistance coefficient, circular flow and wake flow characteristics was compared and analysed. Then on this basis, the time-domain analysis of wind loads and load-effects was performed for the wind turbine tower structure under different halt states by making use of the finite element method. The main conclusions of this paper are as follows: The halt positions of wind blade could have a big impact on tower circular flow and aerodynamic distribution, in which Condition 5 is the most unfavourable while Condition 1 is the most beneficial condition. The wind loads and load-effects of disturbed region of tower is obviously affected by different halt positions of wind blades, especially the large fluctuating displacement mean square deviation at both windward and leeward sides, among which the maximum response occurs in $350^{\circ}$ to the tower top under Condition 8; the maximum bending moment of tower bottom occurs in $330^{\circ}$ under Condition 2. The extreme displacement of blade top all exceeds 2.5 m under Condition 5, and the maximum value of windward displacement response for the tip of Blade 3 under Condition 8 could reach 3.35 m. All these results indicate that the influence of halt positions of different blades should be taken into consideration carefully when making wind-resistance design for large scale wind turbine tower.

An experimental study on bonding and bearing capacities of thin spray-on liner to evaluate its applicability as a tunnel support member (터널 지보재로서의 적용성 검토를 위한 박층 뿜칠 라이너의 부착성능과 지보성능의 평가)

  • Han, Jin-Tae;Lee, Gyu-Phil;Park, Young-Taek;Choi, Soon-Wook;Hwang, Gwi-Sung;Choi, Myung-Sik;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.571-583
    • /
    • 2013
  • The use of Thin Spray-on Liner (TSL) as an alternative to shotcrete has drastically increased since 1990s when it was first developed and introduced to mines. In this study, tensile strength test, bond strength test, compression test with specimens coated by TSL, and two kinds of bending tests proposed by EFNARC (2008) were performed with two kinds of TSLs with different material compositions in order to evaluate their support capacities. As a result, both TSLs were shown to be satisfactory for the minimum performance requirements for a structural rock support suggested by EFNARC (2008) and tensile strength of a TSL was shown to increase as its content of polymer was higher. In contrast, its bond strength was shown to increase proportional to the content of a cementitious component especially at the early age.

Numerical study on structural reinforced effects of concrete lining by spray-applied waterproofing membrane (차수용 박층 멤브레인 설치에 따른 콘크리트 라이닝의 구조적 보강효과에 관한 수치해석 연구)

  • Lee, Chulho;Lee, Kicheol;Kim, Dongwook;Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.551-565
    • /
    • 2017
  • A spray-applied waterproofing membrane which consists of polymers has a relatively higher constructability and adhesion than the conventional sheet-type waterproofing materials. Additionally, the spray-applied waterproofing membrane generally shows a waterproofing ability as a composite structure with shotcrete or concrete lining. Because its purpose is waterproofing at the structure, structural effects were not well reported than waterproofing abilities. In this study, structural effects of the membrane-attached concrete lining were evaluated using 3-point bending test by the numerical method. From the analysis, a load-displacement behavior of the concrete lining and fracturing energy after yielding were compared with various conditions. Consequently, concrete lining with spray-applied waterproofing membrane shows higher flexural strength and fracturing energy than the single-layer concrete lining.