• Title/Summary/Keyword: Bender Element (BE)

Search Result 32, Processing Time 0.031 seconds

Study on the Small Sized Robots Actuator using Piezoelectric Ceramic Bender (압전세라믹 벤더를 이용한 소형로봇용 구동원에 관한 연구)

  • Park, Jong-Man;Song, Chi-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.337-343
    • /
    • 2020
  • This study proposed piezoelectric ceramic bender actuators for application to small walking robots. As the space where human access has recently become increasingly restricted (e.g., highly concentrated radioactive storage areas, viral contaminated areas, terrorist zones, etc.), the scope of using robots is becoming more diverse, and many actions that were possible only in the past have been attempted to be replaced by small robots. This robotic concept has the advantage of being simple in structure, making it compact and producing a large size work force. The dynamic modeling, using finite element analysis, maximized the robot's mobility performance by optimizing the shape of the actuator, and the results were verified through fabrication and experimentation. The actuator moved at a maximum speed of 236 mm/s under no load conditions, and it could move at a speed of 156 mm/s under load conditions of 5g. The proposed actuator has the advantage of modular additions depending on the mission and required performance, which ensured that they are competitive against similar drive sources previously created.

Anisotropic Elastic Shear Moduli of Sands Measured by Multi-directional Bender Element Tests in Stress Probe Experiments (사질토의 전단 하중 재하 시 다축 벤더엘리먼트 시험으로 구한 이방적 전단탄성계수)

  • Ko, Young Joo;Jung, Young Hoon;Lee, Choong Hyun;Chung, Choong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.159-166
    • /
    • 2008
  • The stress-strain behavior of soils can usually be regarded as non-linear, while it is also known that the soil exhibits the linear-elastic behavior at pre-failure state (very small strain range, $<10^{-3}%$). This study aims to analyze the variation of anisotropic elastic shear moduli of granular soils in various stress conditions. The stress probe experiments with the triaxial testing device equipped with local strain gages and multi-directional bender elements were conducted. When the stress ratio exceeds the range between -0.5 and 1.5, the elastic shear stiffness in the axial direction deviates from the empirical correlation with current stresses, which indicates that the yielding of soils alters the internal pathway through which the elastic shear wave propagates. The experimental results show that the variation of elastic shear moduli in the horizontal direction closely relates to the volume change of soils.

Prediction of maximum shear modulus (Gmax) of granular soil using empirical, neural network and adaptive neuro fuzzy inference system models

  • Hajian, Alireza;Bayat, Meysam
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.291-304
    • /
    • 2022
  • Maximum shear modulus (Gmax or G0) is an important soil property useful for many engineering applications, such as the analysis of soil-structure interactions, soil stability, liquefaction evaluation, ground deformation and performance of seismic design. In the current study, bender element (BE) tests are used to evaluate the effect of the void ratio, effective confining pressure, grading characteristics (D50, Cu and Cc), anisotropic consolidation and initial fabric anisotropy produced during specimen preparation on the Gmax of sand-gravel mixtures. Based on the tests results, an empirical equation is proposed to predict Gmax in granular soils, evaluated by the experimental data. The artificial neural network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were also applied. Coefficient of determination (R2) and Root Mean Square Error (RMSE) between predicted and measured values of Gmax were calculated for the empirical equation, ANN and ANFIS. The results indicate that all methods accuracy is high; however, ANFIS achieves the highest accuracy amongst the presented methods.

Application of Bender Elements in Consolidation, Tomography, and Liquefaction Tests (압밀, 토모그래피, 액상화시험에서 벤더엘리먼트의 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.43-54
    • /
    • 2006
  • The scope of this paper covers the applications of bender element tests in consolidation, tomography, and liquefaction. Loading and unloading time during consolidation are evaluated based on shear wave velocity. As S-wave velocity is dependent on effective stress, the loading step may be determined. However, cautions are required due to the different mechanism between the settlement and effective stress criteria. The stress history may be evaluated because the S-wave shows the cement controlled regime and stress controlled regimes. A fixed frame complemented with bender elements permits S-wave tomography The tomography system is tested at low confinement within a true triaxial cell. Results show that shear wave velocity tomography permits monitoring changes in the velocity field which is related to the average effective stress. To monitor the liquefaction phenomenon, S-wave trans-illumination is implemented with a high repetition rate to provide detailed information on the evolution of shear stiffness during liquefaction. The evolution of shear wave propagation velocity and attenuation parallel the time-history of excess pore pressure during liquefaction. Applications discussed in this paper show that bender elements can be a very effective tool for the detection of shear waves in the laboratory.

An experimental procedure for evaluating the consolidation state of marine clay deposits using shear wave velocity

  • Chang, Ilhan;Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.289-302
    • /
    • 2011
  • In marine clay deposits, naturally formed or artificially reclaimed, the evaluation and monitoring of the consolidation process has been a critical issue in civil engineering practices due to the time frame required for completing the consolidation process, which range from several days to several years. While complementing the conventional iconographic method suggested by Casagrande and recently developed in-situ techniques that measure the shear wave, this study suggests an alternative experimental procedure that can be used to evaluate the consolidation state of marine clay deposits using the shear wave velocity. A laboratory consolidation testing apparatus was implemented with bimorph-type piezoelectric bender elements to determine the effective stress-shear wave velocity (${\sigma}^{\prime}-V_s$) relationship with the marine clays of interest. The in-situ consolidation state was then evaluated by comparing the in-situ shear wave velocity data with the effective stress-shear wave velocity relationships obtained from laboratory experiments. The suggested methodology was applied and verified at three different sites in South Korea, i.e., a foreshore site in Incheon, a submarine deposit in Busan, and an estuary delta deposit in Busan. It is found that the shear wave-based experimental procedure presented in this paper can be effectively and reliably used to evaluate the consolidation state of marine clay deposits.

A Pilot Study of Inhole Type CPTu from Model Tests (실내모형실험을 통한 인홀형 탄성파콘 시험의 적용성 분석)

  • Jang, In-Sung;Jung, Min-Jae;Kwon, O-Soon;Mok, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.95-103
    • /
    • 2008
  • Seismic piezocone penetration tests (SCPTu) can be used to obtain dynamic properties of soils as well as cone resistance and penetration pore pressure. However, the SCPTu system can be hardly utilized in marine soils because it is difficult to install the source apparatus which generates the shear wave in offshore site. The authors developed an inhole type piezocone penetration test (CPTu) equipment which both source and receiver composed of bender elements were installed inside the rod located behind the cone. Therefore, it can be applicable to even an offshore site without any additional source apparatus. The objective of this paper is to investigate the practical application of inhole type CPTu by performing laboratory model tests using kaolinite as soft clay. The shear wave velocities of kaolinite soil were measured with time, and the effects of soil disturbance due to the installation of source and receiver were also examined for various distance between source and receiver.

Evaluation of Early-age Properties of Controlled Low Strength Material Using Non-destructive Testing (비파괴 기법을 이용한 유동성 채움재의 초기경화특성 평가)

  • Kim, Dong-Ju;Kim, Sang-Cheol;Han, WooJin;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.31-38
    • /
    • 2020
  • Controlled Low Strength Material (CLSM) has high fluidity and self-compaction characteristics. CLSM is mainly used for backfilling the excavated road. Early-age properties of CLSM should be characterized for fast restoration of the road. In this study, shear wave monitoring and Vicat needle test are performed to investigate the early-age properties of CLSM depending on the setting time. CLSM consists of CSA cement, fly ash, silt and sand, accelerator, and water. Five fly ashes with different chemical properties are used for CLSM samples. The penetration of CLSM along setting time is obtained through the Vicat needle test. A pair of bender elements are placed in a mold for shear wave measurement, and the change in shear waves with the setting time is monitored. The experimental results show that, regardless of the type of fly ash, the penetration depth decreases and the shear wave velocity increases with the setting time. Depending on the type of fly ash, initial and final times and shear wave velocity change. After testing, the correlation between penetration and shear wave velocity is obtained with high coefficient of determination. The shear wave measurement technique using the bender element can be used to identify early-age properties.

Evaluation of Alternative Approaches for Nonlinear Cross-anisotropic Parameters on the Small Strain Model based on Triaxial Test Results (삼축 시험을 이용한 미소 변형 모델의 비선형 직교 이방 계수에 대한 평가 방법 고찰)

  • Chun, Sung-Ho;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.286-300
    • /
    • 2006
  • Nonlinear cross-anisotropic properties of soil is critical for exact numerical simulation. Theoretically, initial cross-anisotropic properties can be evaluated from triaxial tests with bender element tests, and nonlinear cross-anisotropic properties over initial strain level cannot be evaluated from triaxial tests. In this study, a supposed condition among nonlinear cross-anisotropic properties is suggested to calculate nonlinear cross-anisotropic properties from triaxial tests. Maximum strain and incremental strain energy are applied to combine triaxial test results and theoretical normalized shear modulus curve, respectively Based on combined results, nonlinear cross-anisotropic properties are calculated. Numerical simulation for triaxial tests Is carried out to verify the applicability of the supposed condition with calculated cross-anisotropic properties and simplified nonlinear cross-anisotropic model.

  • PDF

Development of VPPE-BE Testing System to Evaluate Modulus under Post-Compaction Variation in Matric Suction for Unsaturated Compacted Soils (다짐지반의 모관흡수력 변화에 따른 탄성계수 평가를 위한 VPPE-BE 시험 시스템 개발)

  • Lee, Sei-Hyun;Seo, Won-Seok;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.117-127
    • /
    • 2008
  • The volumetric pressure plate extractor (VPPE) was modified for the measurement of shear wave velocity ($V_s$) at various levels of matric suction as well as soil water characteristic curve (SWCC). A non-destructive technique with a pair of bender element (BE) was employed in order to measure the $V_s$ and the corresponding maximum shear modulus ($G_{max}$) of unsaturated soil specimens. Three types of soil were collected from different road construction sites in Korea. For all test soils, the variations in $G_{max}$ with the various levels of water content and matric suction were investigated using the developed apparatus. Compared with the preceding results from the suction-controlled torsional shear (TS) testing system and in-situ seismic tests, the feasibility fur evaluating modulus characteristics of unsaturated compacted soils with the developed VPPE-BE system was assessed. It was confirmed that the newly developed system would be potentially helpful in modeling seasonal variation of modulus.

Comparison of dynamic and static methods in the measurement of the initial stiffness of soil (동적 및 정적 실험 방법으로 평가한 지반의 초기 강성 비교)

  • Choo, Jin-Hyun;Jung, Young-Hoon;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.940-951
    • /
    • 2009
  • A comparative study on dynamic and static measurement of initial stiffness was conducted. Because soil stiffness decreases even at very small strains, the initial stiffness has been measured by dynamic tests using shear wave velocity measurement. On the other hand, due to the advance of local strain measurement, the triaxial testing device is capable of measuring the static initial stiffness. It has been known that initial stiffness measured by static triaxial tests is generally lower than that measured by dynamic tests possibly due to the limitation of static measurement of displacement at very small strains. This study presents experimental results indicating that the elastic shear moduli could be the same both in dynamic and static measurements owing to the soil anisotropy induced by anisotropic stresses.

  • PDF