• 제목/요약/키워드: Bend curvature

검색결과 50건 처리시간 0.019초

하천 만곡률과 홍수량에 따른 수면경사도 산정 (Estimation of the Water Surface Slope by the Flood Discharge with River Bend Curvature)

  • 최한규;이문희;백효선
    • 산업기술연구
    • /
    • 제26권A호
    • /
    • pp.129-137
    • /
    • 2006
  • In this research, we made a one and two-dimensional analysis of numerical data collected from the bend curvature of a bended river section. According to the result from the numerical analysis, the inflow & output angle caused a water level deviation which increased with an increase of the flood discharge. From the water level deviation of our two-dimensional numerical model, we obtained the maximum slope of 6,67% when the inflow and output angle was 105 degrees and the flood discharge was 500 CMS. As for the right side, the differences with the one-dimensional numerical model were reduced when the angle was more than $90^{\circ}$. As for the left side the differences were reduced when the angle was more than $105^{\circ}$. For a river with more than 90 degrees bend curvature, a hydraulic experiment would be more appropriate than a numerical analysis.

  • PDF

U-곡관 노즐에서 예혼합화염에 미치는 이차 유동의 영향 (Effect of Secondary Flow on a Premixed Flame in the U-bend Nozzle)

  • 김형근;차민석;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.91-101
    • /
    • 1998
  • The effect of secondary flow on both methane/air and propane/air premixed flame was investigated experimentally. By changing the radius of curvature, various flame behavior was observed. In the V-bend nozzles, flame surface is deformed from axisymmetry. As the exit velocity increased, flame lifted off partially. When the radius of curvature of the V-bend increased, the region where premixed flame is entirely on the rim increased. Since the axial velocity field is changed due to the secondary flow effect, comparison of V-bend and straight tube with the same diameter shows larger V-bend nozzle exit velocity for both flash back and flame blowout. The flame characteristics are mapped with a equivalence ratio, a velocity, and a nozzle radius of curvature. To identify physical reasoning on the flame surface deformation, numerical calculations are conducted. OH radical distributions in flames are visualized by PLIF technique.

  • PDF

회전하는 정사각단면의 $90^{\circ}$곡관내 난류유동에 관한 실험적 연구 (Measurement of turbulent flow characteristics of rotating square duct with a $90^{\circ}$ bend)

  • 이건휘;최영돈
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2223-2236
    • /
    • 1995
  • 0The fields of turbomachinery and electrical generators provide many examples of flow through rotating internal passages. At the practicing Reynolds number, most of the flow motion is three dimensional and highly turbulent. The proper understanding for the characteristics of these turbulent flow is necessary for the design of thermo-fluid machinery of a good efficiency. The flow characteristics in the rotating duct with curvature are very complex in practice due to the curvature and rotational effect of the duct. The understanding of the effect of the curvature on the structure and rotational effect of the duct. The understanding of the effect of the curvature on the structure of turbulence in the curved passage and the characteristics of the flow in a rotating radial straight channel have been well studied separately by many workers. But the combined effects of curvature and rotation on the flow have not been well understood inspite of the importance of the phenomena in the practical design process. In this study, the characteristics of a developing turbulent flow in a square sectioned 90.deg. bend rotating at a constant angular velocity are measured by using hot-wire anemometer to seize the rotational effects on the flow characteristics. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotational affect directly both the mean motion and the turbulent fluctuations.

회전하는 정사각 단면 $90^{\circ}$ 곡덕트 내의 발달하는 난류유동의 측정 (Measurement of Developing Turbulent Flows in a Rotating 90 Degree Bend with Square Cross-Section)

  • 김동철;전건호;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.819-824
    • /
    • 2001
  • Mean velocity and Reynolds stress components of the developing turbulent flows in a rotating 90 degree bend with square cross-section were measured by a hot-wire anemometer. Effects of the centrifugal and Coriolis forces generated by the curvature and rotation of bend on the mean motion and turbulence structures are investigated experimentally. Results show that the Coriolis force associated with the rotation of the bend may act both through the mean motion and turbulent structures, thereby changing the pressure fields, mean and turbulent velocities distributions.

  • PDF

회전하는 정사각 단면 U자형 곡관 내부의 유동 발달에 관한 수치적 연구(II) -난류 유동- (A Numerical Study on the Flow Development around a Rotating Square-Sectioned U-Bend(II) - Turbulent Flow -)

  • 이공희;백제현
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.850-858
    • /
    • 2002
  • The present study investigates in detail the combined effects of the Coriolis force and centrifugal force on the development of turbulent flows in a square-sectioned U-bend rotating about an axis parallel to the center of bend curvature. When a viscous fluid flows through a curved region of U-bend, two types of secondary flow occur. One is caused by the Coriolis force due to the rotation of U-bend and the other by the centrifugal force due to the curvature of U-bend. For positive rotation, where the rotation is in the same direction as that of the main flow, both the Coriolis force and the centrifugal force act radially outwards. Therefore, the flow structure is qualitatively similar to that observed in a stationary curved duct. On the other hand, under negative rotation, where these two forces act in opposite direction, more complex flow fields can be observed depending on the relative magnitudes of the forces. Under the condition that the value of Rossby number and curvature ratio is large, the flow field in a rotating U-bend can be represented by two dimensionless parameters : $K_{TC}$ =Re $\sfrac{1}{4}$√λand a body force ratio F=λ/Ro. Here, $K_{TC}$ has the same dynamical meaning as $K_{TC}$ =Re√λ for laminar flow.

홍수터 식생에 의한 저수로 사행 발달과정 실험적 분석 (Experimental analysis of meandering channel development processes with floodplain vegetation)

  • 장창래
    • 한국수자원학회논문집
    • /
    • 제56권12호
    • /
    • pp.895-903
    • /
    • 2023
  • 본 연구에서는 실내실험을 수행하여 홍수터 식생에 의한 하안의 안정성, 만곡부의 곡률 변화, 사행의 발달과 이동을 정량적으로 분석하였다. 홍수터에 식생이 있는 하도는 시간이 증가하면서 사행의 하폭이 일정하게 유지하지만, 선택적인 하안침식에 의해 사행이 발달하고 하류로 이동하였다. 이러한 과정에서 하안침식과 사주의 변화가 크지 않으며, 저수로가 일정하게 유지되면서 유사유출량은 감소하고 변동성이 거의 없이 일정하게 유지되고 있다. 식생의 밀도가 증가함에 따라, 하안침식률이 감소하였다. 식생의 밀도가 증가함에 따라 하안침식률이 감소하였고, 사행의 발달에 영향을 주었다. 이는 홍수터 식생이 하안의 안정성을 증가시키고, 하도의 평면변화에 영향을 미치는 주요 인자 중의 하나임을 의미한다. 하안침식률과 무차원 곡률반경은 홍수터에 식생이 없는 조건에서 가장 크고, 식생이 있는 조건에서는 작다. 또한 상대 측방이동률과 무차원 곡률반경도 하안침식률과의 관계가 유사하는 특성을 보였다. 따라서 홍수터 식생은 하도의 안정성을 증가시켜서 하안침식과 사행의 발달뿐만 아니라, 사행의 곡률 변화와 이동에 영향을 준다.

회전하는 정사각 단면 U자형 곡관 내부의 유동 발달에 관한 수치적 연구 (I) - 층류 유동 (A Numerical Study on the Flow Development around a Rotating Square-Sectioned U-Bend (I) - Laminar Flow -)

  • 이공희;백제현
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.159-169
    • /
    • 2002
  • The present study investigates in detail the combined effects of the Coriolis and centrifugal farce on the development of laminar flows in a square-sectioned U-bend rotating about an axis parallel to the center of bend curvature. When a viscous fluid flows through a rotating curved region, two types of secondary flow occur. One is caused by the Coriolis force due to the rotation of U-bend and the other by the centrifugal farce due to the curvature of U-bend. When the values of Rossby number and curvature ratio are large, the flow field in a rotating U-bend can be represented by two dimensionless parameters ; the Dean number K$\_$LC/=Re/√λ and a body ratio F=λ/Po. For positive rotation, where the rotation is in the same direction as that of the main flow, both the Coriolis force and the centrifugal force act radially outwards, the directions of the two secondary flows are the same. Therefore, the flow structure is qualitatively similar to that observed in a stationary curved duct with a larger f7c. On the other hand, in case of negative rotation, where two farces act in opposite direction, more complex flow fields can be observed depending on the relative magnitudes of the forces.

하천 만곡률과 홍수량에 따른 수면경사도 산정 (Estimation of the Water Surface Slope by the River Bend Curvature and Flood Discharge)

  • 최한규;이문희;백효선;박수진
    • 한국방재학회 논문집
    • /
    • 제7권2호통권25호
    • /
    • pp.65-71
    • /
    • 2007
  • 본 연구는 만곡하천의 단면을 만곡률에 따라 1 2차원 수치해석을 실시하였다. 수치해석 결과 유 출입각에 따른 수위 편차가 발생하였으며, 홍수량 변동에 따른 편차가 증가하였다. 2차원 수치모형에 의한 수위편차를 보면 유 출입각 105도 일 때 홍수량 500CMS에서 최대경사가 6.67%가 나타났다. 우측은 90도를 초과하는 경우 1차원 수치모형과의 편차가 감소하였으며, 좌측의 수위는 105도를 초과하는 경우 1차원 수치모형과의 편차가 감소하는 것을 확인하였다. 이는 90도 이상의 만곡하천의 경우 수치해석보다는 수리모형실험을 통하여 검증하는 것이 바람직하겠다.

횡방향으로 회전하는 90도 정사각 단면 곡덕트에서 발달하는 난류유동의 측정 (Measurement of Developing Turbulent Flows in a 90-Degree Square Bend with Spanwise Rotation)

  • 김동철;최영돈;이건휘
    • 대한기계학회논문집B
    • /
    • 제27권2호
    • /
    • pp.206-214
    • /
    • 2003
  • Mean flow and turbulence properties of developing turbulent flows in a 90 degree square bend with spanwise rotation were measured by a hot-wire anemometer. A slanted wire is rotated into 6 orientations and the voltage outputs from them are combined to obtain the mean velocity and Reynolds stress components. The combinative effects of the centrifugal and Coriolis forces due to the curvature and the rotation of bend on the mean motion and turbulence structures are investigated experimentally. Results show that the two body forces can either enhance or counteract each other depending on the flow direction in the bend.

회전하는 정사각단면 $90^{\circ}$ 곡덕트 내 내향 난류유동 측정 (Measurement of Inward Turbulent Flows in a Rotating with Square Cross-Section $90^{\circ}$ Duct)

  • 김동철;전건호;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.627-632
    • /
    • 2000
  • Developing turbulent flows in a rotating 90 degree bend with square cross-section were measured by a hot-wire anemometer. The six orientation hot-wire technique was applied to measured the distributions of 3 mean velocities and 6 Reynolds stress components. Effects of Coriolis and centrifugal forces caused by the curvature and rotation of bend on the mean motion and turbulence structures were experimentally investigated Productive addition of Coriolis and centrifugal forces to the outward radial direction in the entrance region of bend increases the secondary flow intensity according to the rotational speeds. However, after 45 degree of bend, centrifugal force due to the rotation of bend may promote the break down of counter rotating vortex pair into multi-cellular pattern, thereby decreasing the production rate of turbulence energy and Reynolds stresses.

  • PDF