• Title/Summary/Keyword: Benchtop NMR

Search Result 3, Processing Time 0.014 seconds

Overhauser dynamic nuclear polarization for benchtop NMR system using a permanent magnet of 1.56 T

  • Lee, Yeon-seong;Lim, Duk-Young;Shim, Jeong Hyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.3
    • /
    • pp.81-86
    • /
    • 2019
  • Overhauser dynamic nuclear polarization (O-DNP) has been an efficient method to boost the thermal nuclear polarization in liquids at room temperature. However, O-DNP for a benchtop NMR using a permanent magnet has remained unexplored yet. In this work, we report the development of an O-DNP system adopting a permanent magnet of 1.6 T. Q-band (~43 GHz) high-power amplifier produced 6 W microwave for saturation. Instead of resonator, we used an open-type antenna for the microwave irradiation. For several representative small molecules, we measured the concentration and frequency dependences of the enhancement factor. This work paves the way for the development of a benchtop DNP-NMR system overcoming its disadvantage of low quality signal when using a permanent magnet.

The ALTADENA and PASADENA studies in benchtop NMR spectrometer

  • So, Howon;Jeong, Keunhong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.1
    • /
    • pp.6-11
    • /
    • 2019
  • Parahydrogen induced hyperpolarization (PHIP) technique is extensively studied to increase the sensitivity of the conventional NMR spectroscopy and recently try to apply this advanced technique into the revolutionary future of the MRI. The other hyperpolarization technique, which is widely utilized, is DNP (Dynamic Nuclear Polarization)-based hyperpolarization one. Despite its great advances in these fields, it contains several drawbacks to overcome: fast relaxation time, expensive equipment is needed, long build-up time is required (several hours), and batch scale material is hyperpolarized. To overcome all those limitations, one can effectively harness the hyperpolarized spin state of parahydrogen. One important step for utilizing the spin state of parahydrogen is doing well-developed experiments of ALTADENA and PASADENA. Based on those concepts, we successfully obtain the hydrogenation signals of ALTADENA and PASADENA from styrene by using benchtop NMR spectrometer. Also those signals were conceptually analyzed and confirmed with different mechanisms. To our best knowledge, those experiments using 1.4T (benchtop NMR) is the first reported one. Considering these experiments, we hope that parahydrogen-based hyperpolarization transfer studies in NMR/MRI will be broadened in Korea in the future.

Constructing Overhauser Dynamic Nuclear Polarization-Nuclear Magnetic Resonance System Using Benchtop Electron Paramagnetic Resonance Spectrometer

  • Saun, Seung-Bo;Kim, JiWon;Han, Oc Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • The Nuclear Magnetic Resonance (NMR) technique using Dynamic Nuclear Polarization (DNP) procedures is one of the promising techniques that enable overcoming low sensitivity problems in NMR spectroscopy. We constructed an ODNP-NMR system using a commercial benchtop EPR spectrometer. The $^1H$ NMR peak area of water in aqueous solutions of 4-hydroxy-TEMPO was enhanced more than 95 times in the ODNP-NMR experiments. Our signal enhancement results were about 55% of the previously reported result. This could be due to non-uniform microwave power over a sample and unwanted sample heating by microwave. However, this portable ODNP-NMR spectrometer will be eventually useful for site-specific detection with nano-scale spatial resolutions and molecular dynamics studies with significantly improved signal sensitivity.