• Title/Summary/Keyword: Benchmark test

Search Result 394, Processing Time 0.023 seconds

Optimum design of retaining structures under seismic loading using adaptive sperm swarm optimization

  • Khajehzadeh, Mohammad;Kalhor, Amir;Tehrani, Mehran Soltani;Jebeli, Mohammadreza
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.93-102
    • /
    • 2022
  • The optimum design of reinforced concrete cantilever retaining walls subjected to seismic loads is an extremely important challenge in structural and geotechnical engineering, especially in seismic zones. This study proposes an adaptive sperm swarm optimization algorithm (ASSO) for economic design of retaining structure under static and seismic loading. The proposed ASSO algorithm utilizes a time-varying velocity damping factor to provide a fine balance between the explorative and exploitative behavior of the original method. In addition, the new method considers a reasonable velocity limitation to avoid the divergence of the sperm movement. The proposed algorithm is benchmarked with a set of test functions and the results are compared with the standard sperm swarm optimization (SSO) and some other robust metaheuristic from the literature. For seismic optimization of retaining structures, Mononobe-Okabe method is employed for dynamic loading conditions and total construction cost of the structure is considered as the single objective function. The optimization constraints include both geotechnical and structural restrictions and the design variables are the geometrical dimensions of the wall and the amount of steel reinforcement. Finally, optimization of two benchmark retaining structures under static and seismic loads using the ASSO algorithm is presented. According to the numerical results, the ASSO may provide better optimal solutions, and the designs obtained by ASSO have a lower cost by up to 20% compared with some other methods from the literature.

BIM-BASED PLANNING OF TEMPORARY FACILITIES FOR CONCRETE CONSTRUCTION

  • Kyungki Kim;Jochen Teizer
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.1-6
    • /
    • 2013
  • Concrete construction requires utilization of many temporary facilities such as formwork, shoring, and scaffolding. Appropriate use of these temporary facilities greatly impacts the quality, cost, schedule, and safety of concrete construction. The current practice in design and planning of temporary facilities is often manual, error-prone, and re-active based on construction site layout, status, and progress in the field. Early design and planning of temporary facilities for concrete construction using Building Information Modeling (BIM) technology offers a potential solution. Although some commercially-available software exists that assists in the generation of temporary facility designs, the construction industry lacks tools that support detailed planning and design of many other temporary facilities. This research presents our early work in automating the design and planning of temporary facilities utilizing BIM. Algorithms were developed to automatically assess geometric conditions of work space to detect required temporary facilities and design them. The proposed methodology was implemented in a test model. By automatically incorporating temporary facilities into BIM, more realistic construction models can be created with less effort and errors. Temporary facilities-loaded models can finally be used for communication, bill of materials, scheduling, etc. and as a benchmark for field installation of temporary formwork, shoring, and scaffolding systems.

  • PDF

Investigation of nonlinear free vibration of FG-CNTRC cylindrical panels resting on elastic foundation

  • J.R. Cho
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.439-449
    • /
    • 2023
  • Non-linear vibration characteristics of functionally graded CNT-reinforced composite (FG-CNTRC) cylindrical shell panel on elastic foundation have not been sufficiently examined. In this situation, this study aims at the profound numerical investigation of the non-linear vibration response of FG-CNTRC cylindrical panels on Winkler-Pasternak foundation by introducing an accurate and effective 2-D meshfree-based non-linear numerical method. The large-amplitude free vibration problem is formulated according to the first-order shear deformation theory (FSDT) with the von Karman non-linearity, and it is approximated by Laplace interpolation functions in 2-D natural element method (NEM) and a non-linear partial derivative operator HNL. The complex and painstaking numerical derivation on the curved surface and the crucial shear locking are overcome by adopting the geometry transformation and the MITC3+ shell elements. The derived nonlinear modal equations are iteratively solved by introducing a three-step iterative solving technique which is combined with Lanczos transformation and Jacobi iteration. The developed non-linear numerical method is estimated through the benchmark test, and the effects of foundation stiffness, CNT volume fraction and functionally graded pattern, panel dimensions and boundary condition on the non-linear vibration of FG-CNTRC cylindrical panels on elastic foundation are parametrically investigated.

Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment (노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용)

  • Choi, Seon Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.21-32
    • /
    • 2019
  • Inspired by the social behavior models of a bird flock or fish school, particle swarm optimization (PSO) is a popular metaheuristic optimization algorithm and has been widely used from solving a complex optimization problem to learning a artificial neural network. However, PSO is difficult to apply to many real-life optimization problems involving stochastic noise, since it is originated in a deterministic environment. To resolve this problem, this paper incorporates a resampling method called the uncertainty evaluation (UE) method into PSO. The UE method allows the particles to converge on the accurate optimal solution quickly in a noisy environment by selecting the particles' global best position correctly, one of the significant factors in the performance of PSO. The results of comparative experiments on several benchmark problems demonstrated the improved performance of the propose algorithm compared to the existing studies. In addition, the results of the case study emphasize the necessity of this work. The proposed algorithm is expected to be effectively applied to optimize complex systems through digital twins in the fourth industrial revolution.

Pre-service Science Teachers' Perceptions of Significance and Usefulness of Evolution and Genetics (예비과학교사들의 진화와 유전에 대한 중요성과 유용성에 대한 인식)

  • Ha, Minsu
    • Journal of Science Education
    • /
    • v.40 no.3
    • /
    • pp.189-202
    • /
    • 2016
  • This study aimed to investigate pre-service science teachers' perceptions of significance and usefulness of evolution and genetics. To this end, 82 pre-service biology teachers and 159 non-biology science teachers answered the items to measure the perceptions of significance and usefulness of evolution and genetics. The validity and reliability were examined using Cronbach alpha, two-dimensional rating scale model Rasch analysis, and factor analysis. The finding illustrated that the test items met the benchmark to be valid and reliable test items. Second, pre-service teachers' perception of significance and usefulness of evolution was independent to that of genetics. The level of pre-service teachers' perception of significance and usefulness of evolution was lower than the level of genetics. Lastly, the levels of pre-service teachers' perceptions of significance and usefulness of evolution and genetics were not significantly different across academic years and majors (biology and non-biology). The findings of this study stressed the importance of teaching significance and usefulness of evolution and genetics in pre-service science teacher education program.

Combined multi-predict-correct iterative method for interaction between pulsatile flow and large deformation structure

  • Wang, Wenquan;Zhang, Li-Xiang;Yan, Yan;Guo, Yakun
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.361-379
    • /
    • 2012
  • This paper presents a fully coupled three-dimensional solver for the analysis of interaction between pulsatile flow and large deformation structure. A partitioned time marching algorithm is employed for the solution of the time dependent coupled discretised problem, enabling the use of highly developed, robust and well-tested solvers for each field. Conservative transfer of information at the fluid-structure interface is combined with an effective multi-predict-correct iterative scheme to enable implicit coupling of the interacting fields at each time increment. The three-dimensional unsteady incompressible fluid is solved using a powerful implicit time stepping technique and an ALE formulation for moving boundaries with second-order time accurate is used. A full spectrum of total variational diminishing (TVD) schemes in unstructured grids is allowed implementation for the advection terms and finite element shape functions are used to evaluate the solution and its variation within mesh elements. A finite element dynamic analysis of the highly deformable structure is carried out with a numerical strategy combining the implicit Newmark time integration algorithm with a Newton-Raphson second-order optimisation method. The proposed model is used to predict the wave flow fields of a particular flow-induced vibrational phenomenon, and comparison of the numerical results with available experimental data validates the methodology and assesses its accuracy. Another test case about three-dimensional biomedical model with pulsatile inflow is presented to benchmark the algorithm and to demonstrate the potential applications of this method.

Radioactive Wastes Vitrification Using Induction Cold Crucible Melter: Characteristics of Vitrified Form (유도 가열식 저온용융로를 이용한 방사성페기물 유리화: 유리 고화체 특성)

  • 김천우;박은정;최종락;지평국;최관식;맹성준;박종길;신상운;송명재
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.576-581
    • /
    • 2002
  • In order to simultaneously vitrify the ton Exchange Resin(IER) and Dry Active Waste(DAW) generated from the Nuclear Power Plants, a vitrification pilot test was conducted using an induction cold crucible melter. The PCT result evaluating the chemical durability of the vitrified from showed that the final glass was more durable than the benchmark glass. Liquidus temperature for the final vitrified form was 1048 K(775$\^{C}$) fur heat treatment experiments. The value of the compressive strength for the vitrified form was ninety times higher than the regulation limit, 34 kg/㎠. The glasses on bottom, middle and top of the CCM were homogeneous with no secondary phase. The precipitation of the magnetic metal phase was able to be avoided by simultaneously fEeding of DAW with IER containing strongly reducing organics. Volume reduction factor of 74 was achieved through the vitrification Pilot test for mixed waste.

Performance Characterization of Tachyon Supercomputer using Hybrid Multi-zone NAS Parallel Benchmarks (하이브리드 병렬 프로그램을 이용한 타키온 슈퍼컴퓨터의 성능)

  • Park, Nam-Kyu;Jeong, Yoon-Su;Yi, Hong-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.138-144
    • /
    • 2010
  • Tachyon primary system which introduces recently is a high performance supercomputer that composed with AMD Barcelona nodes. In this paper, we will verify the performance and parallel scalability of TachyonIn by using multi-zone NAS Parallel Benchmark(NPB) which is one of a program with hybrid parallel method. To test performance of hybrid parallel execution, B and C classes of BT-MZ in NPB version 3.3 were used. And the parallel scalability test has finished with Tachyon's 1024 processes. It is the first time in Korea to get a result of hybrid parallel computing calculation using more than 1024 processes. Hybrid parallel method in high performance computing system with multi-core technology like Tachyon describes that it can be very efficient and useful parallel performance benchmarks.

A New Low Power LFSR Architecture using a Transition Monitoring Window (천이 감시 윈도우를 이용한 새로운 저전력 LFSR 구조)

  • Kim Youbean;Yang Myung-Hoon;Lee Yong;Park Hyuntae;Kang Sungho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.8 s.338
    • /
    • pp.7-14
    • /
    • 2005
  • This paper presents a new low power BIST TPG scheme. It uses a transition monitoring window (TMW) that is comprised of a transition monitoring window block and a MUX. When random test patterns are generated by an LFSR, transitions of those patterns satisfy pseudo-random gaussian distribution. The Proposed technique represses transitions of patterns using a k-value which is a standard that is obtained from the distribution of U to observe over transitive patterns causing high power dissipation in a scan chain. Experimental results show that the Proposed BIST TPG schemes can reduce scan transition by about $60\%$ without performance loss in ISCAS'89 benchmark circuits that have large number scan inputs.

Comparison of the Fatigue Behaviors of FRP Bridge Decks and Reinforced Concrete Conventional Decks Under Extreme Environmental Conditions

  • Kwon, Soon-Chul;Piyush K. Dutta;Kim, Yun-Hae;Anido, Roberto-Lopez
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • This paper summarizes the results of the fatigue test of four composite bridge decks in extreme temperatures (-30$^{\circ}C$ and 50$^{\circ}C$ ). The work was performed as part of a research program to evaluate and install multiple FRP bridge deck systems in Dayton, Ohio. A two-span continuous concrete deck was also built on three steel girders for the benchmark tests. Simulated wheel loads were applied simultaneously at two points by two servo-controlled hydraulic actuators specially designed and fabricated to perform under extreme temperatures. Each deck was initially subjected to one million wheel load cycles at low temperature and another one million cycles at high temperature. The results presented in this paper correspond to the fatigue response of each deck for four million load cycles at low temperature and another four million cycles at high temperature. Thus, the deck was subjected to a total of ten million cycles. Quasi-static load-deflection and load-strain responses were determined at predetermined fatigue cycle levels. Except for the progressive reduction in stiffness, no significant distress was observed in any of the composite deck prototypes during ten million load cycles. The effects of extreme temperatures and accumulated load cycles on the load-deflection and load-strain response of FRP composite and FRP-concrete hybrid bridge decks are discussed based on the experimental results.