• Title/Summary/Keyword: Benchmark soil

Search Result 18, Processing Time 0.023 seconds

Analysis of Earthquake Response Data Recorded from the Hualien Large-Scale Seismic Test (Hualien 대형내진모델시험의 지진응답 계측데이타 분석)

  • 현창헌
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.335-342
    • /
    • 1998
  • A soil-structure interaction (SSI) experiment is being conducted in a seismically active region in Hualien, Taiwan. To obtain earthquake data for quantifying SSI effects and providing a basis to benchmark analysis methods, a 1/4-th scale cylindrical concrete containment model similar in shape to that of a nuclear power plant containment was constructed in the field where both the containment model and its surrounding soil, surface and sub-surface, are extensively instrumented to record earthquake data. In between September 1993 and May 1996, fifteen earthquakes with Richter magnitudes ranging from 4.2 to 6.2 were recorded. The recorded data were analyzed to provide information on the response characteristics of the Hualien soil-structure system, the SSI effects and the ground motion characteristics. The ground response data were analyzed for their variations with depth, with distance from the model structure, and at the same depths along downhole arrays. Variations of soil stiffness and soil-structure system frequencies were also evaluated against maximum ground motion. In addition, the site soil properties were derived based on correlation analysis of the recorded data and then correlated with those from the geotechnical investigation data.

  • PDF

VIV simulation of riser-conductor systems including nonlinear soil-structure interactions

  • Ye, Maokun;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.241-259
    • /
    • 2019
  • This paper presents a fully three-dimensional numerical approach for analyzing deepwater drilling riser-conductor system vortex-induced vibrations (VIV) including nonlinear soil-structure interactions (SSI). The drilling riser-conductor system is modeled as a tensioned beam with linearly distributed tension and is solved by a fully implicit discretization scheme. The fluid field around the riser-conductor system is obtained by Finite-Analytic Navier-Stokes (FANS) code, which numerically solves the unsteady Navier-Stokes equations. The SSI is considered by modeling the lateral soil resistance force according to nonlinear p-y curves. Overset grid method is adopted to mesh the fluid domain. A partitioned fluid-structure interaction (FSI) method is achieved by communication between the fluid solver and riser motion solver. A riser-conductor system VIV simulation without SSI is firstly presented and served as a benchmark case for the subsequent simulations. Two SSI models based on a nonlinear p-y curve are then applied to the VIV simulations. Also, the effects of two key soil properties on the VIV simulations of riser-conductor systems are studied.

Vertical Accuracy Assessment of SRTM Ver 3.0 and ASTER GDEM Ver 2 over Korea (한국에서의 SRTM(Ver 3.0)과 ASTER(Ver 2) 전 세계 수치표고모델 정확도 분석)

  • Park, Junku;Kim, Jungsub;Lee, Giha;Yang, Jae E.
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.120-128
    • /
    • 2017
  • The aim of this study is to analyze the accuracy of SRTM Ver 3.0 and ASTER GDEM Ver 2 over Korea. To enable this, accuracy analysis was performed by using precise DEM which was made with multiple aerial image matching and national base map benchmark. The result of this study identified both SRTM and ASTER have different features. The height of the SRTM was found to be higher (3.8 m on average) at lower elevation and lower (8.4 m on average) at higher elevation. In contrast, the ASTER was found to be lower than the actual height at both lower and higher elevation (2.92 m, 4.51 m on average). The cause of this height bias according to the elevation is due to the differences in data acquisition and processing methods of DEM. It was identified however that both SRTM and ASTER were within allowable limits of error. In addition, RMSE of the SRTM was smaller than the ASTER in comparison to benchmark, and also the bias trend both at higher and lower terrain were similar to the precise DEM which was made with multiple aerial image matching. Therefore, the reliability of SRTM can be considered to be higher.

Evaluation of ASCE 61-14 NSPs for the estimation of seismic demands in marginal wharves

  • Smith-Pardo, J. Paul.;Reyes, Juan C.;Sandoval, Juan D.;Hassan, Wael M.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.95-104
    • /
    • 2019
  • The Standard ASCE 61-14 proposes the Substitute Structure Method (SSM) as a Nonlinear Static Procedure (NSP) to estimate nonlinear displacement demands at the center of mass of piers or wharves under seismic actions. To account for bidirectional earthquake excitation according to the Standard, results from independent pushover analyses in each orthogonal direction should be combined using either a 100/30 directional approach or a procedure referred to as the Dynamic Magnification Factor, DMF. The main purpose of this paper is to present an evaluation of these NSPs in relation to four wharf model structures on soil conditions ranging from soft to medium dense clay. Results from nonlinear static analyses were compared against benchmark values of relevant Engineering Design Parameters, EDPs. The latter are defined as the geometric mean demands that are obtained from nonlinear dynamic analyses using a set of 30 two-component ground motion records. It was found that SSM provides close estimates of the benchmark displacement demands at the center of mass of the wharf structures. Furthermore, for the most critical pile connection at a landside corner of the wharf the 100/30 and DMF approaches produced displacement, curvature, and force demands that were reasonably comparable to corresponding benchmark values.

Development and Applications of Infinite Elements for Dynamic Soil-Structure Interaction Analysis (동적 지반-구조물 상호작용해석을 위한 무한요소법의 개발 및 응용사례)

  • Yun, C.B.;Yang, S.C.;Kim, J.M.;Choi, J.S.;Kim, D.K.;Seo, C.G.;Chang, S.H.;Park, K.L.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.14-19
    • /
    • 2008
  • This paper presents dynamic infinite element formulations which have been developed for soil-structure interaction analysis both in frequency and in time domains by the present authors during the past twenty years. Axisymmetric, 2D and 3D layered half-space soil media were considered in the developments. The displacement shape functions of the infinite elements were established using approximate expressions of analytical solutions in frequency domain to represent the characteristics of multiple waves propagating into the unbounded outer domain of the media. The proposed infinite elements were verified using benchmark examples, which showed that the present formulations are very effective for the soil-structure interaction analysis either in frequency or in time domain. Example applications to actual interaction problems are also given to demonstrate the capability and versatility of the present methodology.

  • PDF

An effective finite element approach for soil-structure analysis in the time-domain

  • Lehmann, L.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.437-450
    • /
    • 2005
  • In this study, a complete analysis of soil-structure interaction problems is presented which includes a modelling of the near surrounding of the building (near-field) and a special description of the wave propagation process in larger distances (far-field). In order to reduce the computational effort which can be very high for time domain analysis of wave propagation problems, a special approach based on similarity transformation of the infinite domain on the near-field/far-field interface is applied for the wave radiation of the far-field. The near-field is discretised with standard Finite Elements, which also allows to introduce non-linear material behaviour. In this paper, a new approach to calculate the involved convolution integrals is presented. This approximation in time leads to a dramatically reduced computational effort for long simulation times, while the accuracy of the method is not affected. Finally, some benchmark examples are presented, which are compared to a coupled Finite Element/Boundary Element approach. The results are in excellent agreement with those of the coupled Finite Element/Boundary Element procedure, while the accuracy is not reduced. Furthermore, the presented approach is easy to incorporate in any Finite Element code, so the practical relevance is high.

Influence of soil model complexity on the seismic response of shallow foundations

  • Alzabeebee, Saif
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.193-203
    • /
    • 2021
  • The time-history finite element analysis is usually used to evaluate the seismic response of shallow foundations. However, the literature lacks studies on the influence of the soil constitutive model complexity on the seismic response of shallow foundations. This study, thus, aims to fill this gap by investigating the seismic response of shallow foundation resting on dry silica sand using the linear elastic (LE) model, elastic-perfectly-plastic (EPP) model, and hardening soil with small strain stiffness (HS small) model. These models have been used because it is intended to compare the results of a soil constitutive model that accurately captures the seismic response of the soil-structure interaction problems (which is the HS small model) with simpler models (the LE and EPP models) that are routinely used by practitioners in geotechnical designs. The results showed that the LE model produces a very small seismic settlement value which is approximately equal to zero. The EPP model predicts a seismic settlement higher than that produced using the HS small model for earthquakes with a peak ground acceleration (PGA) lower than 0.25 g for a relative density of 45% and 0.40 g for a relative density of 70%. However, the HS small model predicts a seismic settlement higher than the EPP model beyond the aforementioned PGA values with the difference between both models increases as the PGA rises. The results also showed that the LE and EPP models predict similar trend and magnitude of the acceleration-time relationship directly below the foundation, which was different than that predicted using the HS small model. The results reported in this paper provide a useful benchmark for future numerical studies on the response of shallow foundations subjected to seismic shake.

Failure probability of tall buildings with TMD in the presence of structural, seismic, and soil uncertainties

  • Sadegh, Etedali;Mohammad, Seifi;Morteza, Akbari
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.381-391
    • /
    • 2023
  • The seismic performance of the tall building equipped with a tuned mass damper (TMD) considering soil-structure interaction (SSI) effects is well studied in the literature. However, these studies are performed on the nominal model of the seismic-excited structural system with SSI. Hence, the outcomes of the studies may not valid for the actual structural system. To address the study gap, the reliability theory as a useful and powerful method is utilized in the paper. The present study aims to carry out reliability analyses on tall buildings equipped with TMD under near-field pulse-like (NFPL) ground motions considering SSI effects using a subset simulation (SS) method. In the presence of uncertainties of the structural model, TMD device, foundation, soil, and near-field pulse-like ground motions, the numerical studies are performed on a benchmark 40-story building and the failure probabilities of the structures with and without TMD are evaluated. Three types of soils (dense, medium, and soft soils), different earthquake magnitudes (Mw = 7,0. 7,25. 7,5 ), different nearest fault distances (r = 5. 10 and 15 km), and three seismic performance levels of immediate occupancy (IO), life safety (LS), and collapse prevention (CP) are considered in this study. The results show that tall buildings built near faults and on soft soils are more affected by uncertainties of the structural and ground motion models. Hence, ignoring these uncertainties may result in an inaccurate estimation of the maximum seismic responses. Also, it is found the TMD is not able to reduce the failure probabilities of the structure in the IO seismic performance level, especially for high earthquake magnitudes and structures built near the fault. However, TMD is significantly effective in the reduction of failure probability for the LS and CP performance levels. For weak earthquakes and long fault distances, the failure probabilities of both structures with and without TMD are near zero, and the efficiency of the TMD in the reduction of failure probabilities is reduced by increasing earthquake magnitudes and the reduction of fault distance. As soil softness increases, the failure probability of structures both with and without TMD often increases, especially for severe near-fault earthquake motion.

A Comparative Application of DRASTIC and SINTACS Models for The Assessment of Groundwater Vulnerability of Buyeo Area (DRASTIC과 SINTACS 모델의 비교적용에 의한 부여읍 일대의 지하수 오염 취약성 평가)

  • Kang, Jin-Hee;Park, Eun-Gyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.5
    • /
    • pp.32-39
    • /
    • 2010
  • In this study, we applied DRASTIC and SINTACS models for the assessment of groundwater vulnerability to Buyeo-eup area in Buyeo-gun, Chungcheongnam-do, Korea. Currently, DRASTIC model is a main tool for the assessment of groundwater vulnerability, which has been widely applied for the multiple purposes related to local developments, construction projects, groundwater investigations, etc. since 1980s. Because DRASTIC model has been the sole tool used for the domestic environment, there has been doubt about the degree of reliability of the model, and a benchmark model has been sought by the many practitioners. The objective of this study is to check the applicability of SINTACS model to domestic environment, which is the first attempt in Korea as far as authors understand. The comparative results show that the DRASTIC assessment underestimates groundwater vulnerability of the aquifers composed of fractured bedrocks while that from the SINTACS model is relatively higher. Through this study, it is expected that SINTACS model serves as a reasonable alternative of DRASTIC model where the subsurface is composed of more than two different media such as fractured rocks and alluvium.

Monitoring on Chemical Properties of Bench Marked Paddy Soils in Korea (우리나라 논토양(土壤)의 화학적(化學的) 특성(特性) 분석(分析))

  • Jung, Beung-Gan;Jo, Guk-Hyun;Yun, Eul-Soo;Yoon, Jung-Hui;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.246-252
    • /
    • 1998
  • A survey was conducted to investigate the status of soils involving pH, electrical conductivity, total organic matter content, available phosphate and major exchangeable cations in the paddy soils sampled from 1,168 sites throughout the country. The content of soil chemical properties was lower on the average than the optimum levels for cropping. An average value showed pH 5.6, organic matter $25g\;kg^{-1}$, available phosphate $128mg\;kg^{-1}$, available silicate $72mg\;kg^{-1}$, and exchangeable potassium and the calcium and magnesium were 0.32, 4.0, $1.2cmol^+\;kg^{-1}$, respectively. Soil chemical properties was related with topography except soil pH. A soil pH and organic matter, available phosphate, exchangeable potassium increased with time while exchangeable calcium, magnesium available silicate decreased with time.

  • PDF