• Title/Summary/Keyword: Bench-scale reactor

Search Result 77, Processing Time 0.02 seconds

Analysis of Electrocoagulation Process using Faraday's Law (Faraday's Law에 의한 전기응집공정의 분석)

  • Kim, Hye-Sook;Yun, Young-Im;Cho, Eun-Jeong;Choi, Yun-Hee;Oh, Mi-Young;Kim, Yeong-Kwan
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.351-355
    • /
    • 2001
  • This research was carried out to find out the possibility of using Faraday's law in analyzing the electrocoagulation system. Bench-scale reactor equipped with aluminum electrode plates was operated using synthetic wastewater which received sodium chloride for conductivity adjustment. Phosphate was added to the wastewater to induce the precipitation with Al. The amount of aluminum dissolved from the electrodes could be predicted by Faraday's law with a difference less than 5%. This difference was greater at a higher electric current, probably due to the increased solution temperature. However, effect of pH on the dissolution of the aluminum was negligible. The result of this study suggested that the operating condition of electrocoagulation system could be developed using the Faraday's law when the pollutant concentration is given.

  • PDF

Anaerobic Bioconversion Potential of Blue Crab Processing Waste and Wastewater(I) (꽃게(Blue Crab) 가공 식품 제조 공정상 발생된 폐수 및 폐기물의 혐기성 생분해 가능성(I))

  • Lee, Hyung-Jib
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.54-62
    • /
    • 1997
  • Disposal of blue crab wastes represents a significant problem to processors, who are limited with respect to acceptable disposal alternatives. Anaerobic bioconversion technology was investigated to determine an environmentally sound and economic disposal method for these wastes. In the study ultimate methane yield for total crab solid waste was $0.180m^3/kg$ VS added and biodegradation rate constant was $0.15day^{-1}$. Methane yield of the bench-scale reactor operated on similar feedstock was $0.189m^3/kg$ VS added and biodegradation rate constant was $0.06day^{-1}$. These results indicate that anaerobic bioconversion of blue crab wastes was technically feasible. Use of anaerobic bioconversion technology can be an attractive option for blue crab processing waste management. The by-product methane gas could be used for maintainign a number of processing operations (i.e., heat for cooking, or keeping temperature of digester constant).

  • PDF

Effects of Solids Content and Mixing Speed in Treatment of Petroleum Hydrocarbon Contaminated Soils using a Bioreactor (고형물함량 및 혼합강도가 생물반응기를 이용한 석유계탄화수소 오염토양의 처리에 미치는 영향)

  • 김수철;남궁완;박대원
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.23-30
    • /
    • 1997
  • The purpose of this study was to evaluate effects of solids content and mixing speed in treatment of petroleum hydrocarbon contaminated soils using a slurry-phase bioreactor. Performance results on slurry-phase bioremediation of diesel fuel contaminated soil were generated at the bench-scale level. The fate of TPH(Total Petroleum Hydrocarbon) was evaluated in combination with biological treatment. Abiotic and biotic fate of the TPH were determined using soil not previously exposed to compounds in diesel fuel. The reactor volume for given throughput can be reduced by maximizing the solids content. Applications of 50% and 20% solids content(dry weight basis) were showed a little difference(57.5% : 61.6%) in biological TPH removal rate each other. Mixing and particle suspension are critical to desorption and biological degradation. In this standpoint, this study was performed using two mixing speed. When the reactor was operated at 70rpm, it had a better result in the particle suspension and TPH removal rate than the reactor with mixer rotated at 20rpm. In the reactor applied 20rpm, it was resulted in failure of particle suspension.

  • PDF

Polyvinyl Alcohol 분해 공생 균주에 의한 염색 폐수 중의 PVA 제거

  • Kim, Chul Ki;Choi, Yong-Jin;Lee, Chul-Woo;Rim, Yeon-Taek;Ryu, Jae-Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.89-95
    • /
    • 1997
  • The current processer of the textile wastewater treatment are mostly consisted of a combination of a physico-chemical and a biological treatment. The overall efficiency of these processes is, however, assessed to be fairly low. It is even worse during the summer season when temperature of the wastewater rises above 40$\circ $C. Therefore, a feasible process of the textile wastewater treatment which can work efficiently at higher temperatures was investigated in this work. We used a bench scale reactor consisted of one 4 liter anaerobic and one 8 liter aerobic tank, and the thermophilic symbiotic PVA degraders, Pasteruella hemolytica KMG1 and Pseudomonas sp. KMG6 that had been isolated in our laboratory. In the preliminary flask experiments, we observed that the thermophilic symbiotic PVA degraders could not grow in the wastewater substrate. Then, we isolated the mutant strains by acclimating the KMG1and KMG6 strains to the wastewater medium. The mutant symbionts (KMG1-1 and KMG6-1) were isolated through 6 times successive transfers into the fresh wastewater medium after 5 days culture for each. The mutant strains obtained grew well in the mixed medium composed of 75% wastewater and 25% synthetic medium, and supplemented with 0.5% PVA as a sole carbon source. During the culture for 14 days at pH 7.0 and 40$\CIRC $C, the bacteria assimilated about 89% of the added PVA. The symbionts degraded equally well all the PVA substrates of different molecular weight (nd=500~30000). In contrast to the flask experiments, in the reactor system the mutant strains showed very low levels of the PVA and COD removal rates. However, the new reactor system with an additional aerobic tank attained 82% removal rate of COD, 94% of PVA degradation and 71% of color index under the conditions of 5% inoculm on the tank 2, incubation temperature of 40$\circ $C, dissolved oxygen level of 2~3 mg/l and retention time of 30 hours. This result ensures that the process described above could be an efficient and feasible treatment for the PVA contained textile wastewater at higher temperatures.

  • PDF

Study on the Combined Treatment of Municipal Leachate and Sewage by Sequencing Batch Reactor. (연속회분식활성슬러지공법을 이용한 매립지 침출수와 하수의 병합처리에 관한 연구)

  • 이병인;이상혁
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.145-152
    • /
    • 1993
  • An experimental research was conducted in order to study the treatability of leachate and a combined wastewater of municipal landfill leachate and municipal sewage. The landfill leachate was that of Nanjido landfill site, and the municipal sewage was obtained from Chungnang municipal sewage treatment plant of Seoul. Several sets of bench-scale sequencing batch reactor(SBR) were used as experimental apparatus. Specially investigated items in this experiment were the removal efficiency of substrate and the influence of the hydraulic retention time(HRT). The experiment lasted for about 8 months. The result are as follows ; 1) The characteristics of leachate were pH 7.4~8.1, BOD 280~450 mg/l, COD 1300 ~ 1350 mg/l, T-N 2021 ~2110 mg/1,7-P 2.7 ~3.2 mg/l, Cl-3540 ~4085 mg/l, and heavy metals are a very small amount. And the characteristics of sewage Ivere pH 6.9~7.3, BOD 78.4~129.3 mg/1, COD 121.2~305.0 mg/l, T-N 14.9~36.4 mg/l, T-P 1.3 ~5.9 mg/l. 2) The treatability of leachate alone was not treat well. So for the good treatment of leachate, it was necessary to deal with the pretreatment before biological treatment and a combined treatment of municipal serfage. 3) The various contents of the leachate were 5%, 10%, and 50% and the removal efficiency of COD was 86.0%, 82.8%, 60.6%, and 31.7%. The maximum content of the leachate which could be sucessfully treated by SBR in the combined treatment was 10% of that of sewage.

  • PDF

The Effect of HRT and SRT on Treatment Efficiency of Activated Sludge Process for Low Concentration Municipal Sewage (저농도 도시하수 처리를 위한 활성슬러지공정에서 HRT 및 SRT가 처리효율에 미치는 영향)

  • Whang, Gye Dae;Kim, Min Ho;Ko, Sae Bom
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.64-73
    • /
    • 1997
  • Most of the municipal wastewater treatment plants operated in Korea are designed for high concentrations municipal sewage. However, activated sludge process employed by municipal wastewater treatment plant is operated at low organic loading. The objective of this study was to determine optimum operating condition of activated sludge process for treatment of low concentration municipal sewage. Three bench scale activated sludge reactors were operated to investigate the effect of HRT and SRT on the COD and TSS removal efficiency. The average concentration of TSS, SCOD, SBOD and TKN in influent were 118mg/l, 61mg/l, 21mg/l, and 12mg/l, respectively. The activated sludge reactors operated with various HRT and SRT showed about 89-93% TSS removal efficiency. HRT and SRT does not affect the TSS removal efficiency of actvatied sludge process significantly. However, HRT affected the SCOD removal efficiency slightly. As the HRT decreases from 13hours to 3hours, the SCOD removal efficiency decreases from 67% to 56%. The average effluent TCOD concentration of the reactor operated with 3hours of HRT was approximatly 40-45mg/l. Kinetic coefficient yield (Yt) and decay coefficients(Kd) were 0.594-0.954 mgMLVSS/mgCOD and $0.0197-0.0317day^{-1}$, respectively. Low concentration municipal sewage can be treated with 3 hours of HRT without effluent quality deterioration and SRT does not affect the substrate removal efficiency at this operation condition.

  • PDF

Development of a Liquid-Phase Methanol Synthesis Process for Coal-derived Syngas (석탄가스 전환용 액상 메탄올 합성 공정 개발)

  • Shin, Jang-Sik;Jung, Heon;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.251-257
    • /
    • 2002
  • Liquid-phase methanol synthesis via methyl formate using coal-derived syngas was carried out in a bench-scale(diameter 173 mm and dispersion height 1200 mm) slurry bubble column reactor(SBCR) Under the condition of $180^{\circ}$. 61 atm, 30 L/min, $H_{2}$/CO=2 and a slurry mixture of 2 kg of copper chromite and 0.5 kg of $KOCH_{3}$ suspended in 14 L of methanol, the per pass conversions of syngas is 6 %, maximum concentration of methyl formate 3.088 mol% and maximum synthesis, rate of methanol 0.8 gmole/kg ${\cdot}$ hr. It is a significant evidence that copper chromite powder as heterogeneous catalyst didn't active for the hydrogenolysis of methyl formate to methanol, resulting copper chromite powder was not efficiently suspended in a slurry mixture. To enhance the hydrogenolysis of methyl formate in liquid-phase methanol synthesis process, the designed SBCR have need to use the higher specific gravity solvent and/or decrease the catalyst particle size.

The Biodegradation of Mixtures of Benzene,Phenol,and Toluene by Mixed and Monoculture of Bacteria (단일배양 및 혼합배양에 의한 Benzene, Phenol 및 Toluene 혼합물의 생분해)

  • Lee, Chang-Ho;Oh, Hee-Mock;Kwon, Tae-Jong;Kwon, Gi-Seok;Kim, Seong-Bin;Kho, Yung-Hee;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.685-691
    • /
    • 1994
  • The biodegradation of aromatic compounds by mixed and monoculture was investigated in an artificial wastewater containing 500 mg/l of benzene(B), phenol(P), and toluene(T) in various combinations. None of three strains utilized P-xylene(X) as a carbon source, but they grew well on p-xylene in mixtures with benzene and toluene. In the mixed culture on mixed substrate, the length of lag phase was different depending on the nature of mixture. Cell growths of Flavobac- terium sp. BEN2 and Acinetobacter sp. GEM63 were inhibited in the presence of a 500 mg/l of phenol. When the mixed culture of three strains was cultured in a bench-scale reactor containing artificial wastewater, each of benzene, phenol, and toluene was not detected at 30 hrs, 50 hrs, and 12 hrs after incubation in the treatment. The removal rates of COD$_{t}$(total COD) and COD$_{s}$,(soluble COD) of upper phase after centrifugation during early 50 hrs were ca. 80% and ca. 93.8%, respectively.

  • PDF

A Study on the Reaction-Stoichiometry of Autotrophic Denitrification based on Growth Characteristic of Microorganism (미생물 성장 특성에 기초한 독립영양탈질의 화학양론식 연구)

  • Lee, Su-Won;Kim, Gyu-Dong;Choi, Young-Gyun;Kim, Dong-Han;Chung, Tai-Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.121-127
    • /
    • 2004
  • It is necessary to supply external carbon source for enhancement of biological nitrogen removal from domestic wastewater with low influent C/N ratio. Sulfide was chosen as a cost effective electron donor and reaction stoichiometry for autotrophic denitrification was investigated by conducting bench-scale experiments in this study. Higher sulfur to nitrogen (S/N) ratio than the calculated value from theoretical reaction stoichiometry was required when the anoxic reactor was operated at open condition because dissolved oxygen introduced by surface aeration reacted with sulfide with ease. In addition, higher sulfate production and lower yield of microorganism could be observed under the same condition. It was possible to obtain reliable reaction stoichiometry for autotrophic denitrification by establishing pure anoxic condition. Linear relationship between bacterial growth and consumption of nitrate, sulfide, alkalinity, and sulfate production enabled to derive a relatively correct reaction stoichiometry for autotrophic denitrification when sulfide was used as an electron donor.

Isolation and Identification of Photosynthetic Bacterium Useful for Wastewater Treatment

  • Choi, Han-Pil;Kang, Hyun-Jun;Seo, Ho-Chan;Sung, Ha-Chin
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.643-648
    • /
    • 2002
  • For wastewater treatment and utilization of the biomass, a photosynthetic bacterium was isolated based on its cell growth rate, cell mass, and assimilating ability of organic acids. The isolate was a Gram-negative rod-shaped bacterium that contained a single polar flagellum and formed a lamellar intracytoplasmic membrane (ICM) system, including bacteriochlorophyll $\alpha$. The major isoprenoid quinone component was identified as ubiquinone Q-10, and the fatty acid composition was characterized as to contain relatively large amount of C-16:0 (18.74%) and C-18:1 (59.23%). Based on its morphology, phototrophic properties, quinone component, and fatty acid composition, the isolate appeared to be closely related to the Rhodopseudomonas subgroup of purple nonsulfur bacteria. A phylogenetic analysis of the isolate using its 16S rRNA gene sequence data also supported the phenotypic findings, and classified the isolate closely related to Rhodopseudomonas palustris. Accordingly, the nomenclature of the isolate was proposed as Rhodopseudomonas palustris KUGB306. A bench-scale photosynthetic bacteria (PSB) reactor using the isolate was designed and operated for the treatment of soybean curd wastewater.