• Title/Summary/Keyword: Belt layout

Search Result 7, Processing Time 0.039 seconds

Evaluation of structural outrigger belt truss layouts for tall buildings by using topology optimization

  • Lee, Dong-Kyu;Kim, Jin-Ho;Starossek, Uwe;Shin, Soo-Mi
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.711-724
    • /
    • 2012
  • The goal of this study is to conceptually orientate optimized layouts of outrigger belt trusses which are in widespread use today in the design of tall buildings by strut-and-tie truss models utilizing a topology optimization method. In this study unknown strut-and-tie models are realized by using a typical SIMP method of topology optimization methods. In tradition strut-and-tie model designs find the appropriate strut-and-tie trusses along force paths with respect to elastic stress distribution, and then engineers or designers determine the most proper truss models by experience and intuition. It is linked to a trial-and-error procedure based on heuristic strategies. The presented strut-and tie model design by using SIMP provides that belt truss models are automatically and robustly produced by optimal layout information of struts-and-ties conforming to force paths without any trial-and-error. Numerical applications are studied to verify that outrigger belt trusses for tall buildings are optimally chosen by the proposed method for both static and dynamic responses.

An integrated development methodology of low noise accessory drive system in internal combustion engines (내연기관의 저소음 보기류구동 시스템을 위한 통합 개발 방법론)

  • Park, Keychun;Kong, Jinhyung;Lee, Byunghyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.183-191
    • /
    • 2016
  • A systematic development process for the low noise FEAD (Front End Accessory Drive) system is presented by combining CAE (Computer Aided Engineering) and the experimental rig test. In the estimation of the belt drive noise, two main difficulties arise from the high non-linearity due to the stick-slip contacts on the interfaces of the belt and pulleys, and the interaction of the belt drive system with the powertrain rotational parts. In this work, a recently developed analysis method of the belt drive has been employed considering powertrain rotational dynamics. As results, it shows good correlation with the vehicle tests in various operational modes. The established model has been employed to validate the new design improving the stick-slip noise of the problematic FEAD system. Furthermore, the best proposal of FEAD system in terms of functionality [NVH (Noise, Vibration and Harshness), fuel economy, cost. etc.] has been suggested in the concept design stage of new engine through this presented methodology.

Layout optimization of wireless sensor networks for structural health monitoring

  • Jalsan, Khash-Erdene;Soman, Rohan N.;Flouri, Kallirroi;Kyriakides, Marios A.;Feltrin, Glauco;Onoufriou, Toula
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.39-54
    • /
    • 2014
  • Node layout optimization of structural wireless systems is investigated as a means to prolong the network lifetime without, if possible, compromising information quality of the measurement data. The trade-off between these antagonistic objectives is studied within a multi-objective layout optimization framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end user can select the final layout. The information quality of the measurement data collected from a heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. The network lifetime or equivalently the network energy consumption is estimated through WSN simulation that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a discrete-event simulator with stochastic communication models. Finally, we compare the optimization results with those obtained in a previous work where the network energy consumption is obtained via deterministic communication models.

Performance Evaluation of Outrigger System in Tall Buildings with Eccentric Core (편심코어를 가진 초고층 건축물의 아웃리거 시스템 성능 평가)

  • Park, Ji-Hyeong;Kim, Tae-Ho;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.561-566
    • /
    • 2009
  • The outrigger system with a core is widely used for lateral load resisting system of tall building. Recently, structural systems in tall building are adopted to eccentric core and offset outrigger or one-armed outrigger system by trends in planning buildings of irregular type. Therefore, the performance of outrigger system with eccentric core in tall building is evaluated by 50-stories examples which are analyzed for variables such as layout of core and outrigger, arm length of outrigger and depth of outrigger and belt wall.

  • PDF

An Analytical Study on the Air Purification Effect of Urban Openspace - Focusing on Urban Roadside Trees - (도시녹지의 대기정화효과에 대한 분석적 연구 - 도시 가로수를 중심으로 -)

  • Sung, Hyun-Chan;Moon, Da-Mi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.3
    • /
    • pp.17-28
    • /
    • 2003
  • The objective of this study is to review and verify whether the functions and effect of roadside trees generally known in theory are actually realized in urban roads and how well they are performed if the function and effect are really realized. The study was conducted with a focus on air purification effect of roadside trees. The m헤r study result is as follows. First, calculation of air purification effect of roadside trees showed that it is minimal. However, 7.4 units of broad-leaved trees is necessary in order to purify $SO_2$ discharged by one passenger car and 1,803.3 trees to purify $NO_2$. Second, regarding pollutant absorption capacity, air pollutant absorption capacity increased as the number of rows planted gets higher (i.e., 2-row plantation absorbs pollutant better than I-row plantation). In particular, "2-row plantation + lower-level shrub + buffer green belt" was as eight times high as "I-row plantation" in absorption capacity. Third, out of 30 roads with over 8 lanes in 15 cities, only 33.3% or a total of ten roads in seven cities had a median strip. Out of these ten roads, nine roads were planted in a double-layer consisting forest trees, shrubs, ground plants (grass). Analysis showed that out of six tree species planted along these roads, about a half of them were weak to air pollution. Also, based on the outcome of this study, charging a "plantation due" when people purchase a new car, improving layout of roadside trees, and reinforcing plantation of air purification tree species when selecting tree species for roadside trees were proposed.

A study on improving the interior design of ambulance (구급차 내부 디자인 개선에 관한 연구)

  • Shin, Dong-Min;Park, Si-Eun;Park, Shin-Hye
    • The Korean Journal of Emergency Medical Services
    • /
    • v.17 no.3
    • /
    • pp.9-20
    • /
    • 2013
  • Purpose: This research project addressed the need to designing more safe and efficient interior of the future ambulance in Korea. Methods: The study sample contained 760 paramedics in 4 districts. Data was collected by using a revised and complemented questionnaire based on literature review. Results: In relation to the efficacy and safety of work, answers related to storage closet showed to be the highest, and the most difficult part of paramedic work in an ambulance was lurching. CPR is the most frequently used emergency care inside an ambulance, but 66% of the paramedics responded that accurate CPR is not possible during vehicle transfer. Safety belts are not worn for 82.8% of the time, because of discomfort (51.3%). 13.8% of the paramedics responded that stretchers are unstable, 29.5% had an experience of having patients fall off the stretcher inside an ambulance. There were comments on installing equipments to prevent noise, and assist communication. Conclusion: The suggested practical layout contains five main modifications 1. Developing specially designed belt is needed for paramedic safety & efficient work. 2. The seats are molded to be ergonomically friendly. 3. Equipments to secure the body and safety devices for CPR are needed. 4. System improvement for communication between the driver seat and paramedics is needed. 5. The stretchers are molded to be maximize efficiency and minimize injury.

Assessment of seismic stability of finite slope in c-ϕ soils - a plasticity approach

  • Shibsankar, Nandi;G., Santhoshkumar ;Priyanka, Ghosh
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.439-452
    • /
    • 2022
  • A forecast of slope behavior during catastrophic events, such as earthquakes is crucial to recognize the risk of slope failure. This paper endeavors to eliminate the significant supposition of predefined slip surfaces in the slope stability analysis, which questions the relevance of simple conventional methods under seismic conditions. To overcome such limitations, a methodology dependent on the slip line hypothesis, which permits an automatic generation of slip surfaces, is embraced to trace the extreme slope face under static and seismic conditions. The effect of earthquakes is considered using the pseudo-static approach. The current outcomes developed from a parametric study endorse a non-linear slope surface as the extreme profile, which is in accordance with the geomorphological aspect of slopes. The proposed methodology is compared with the finite element limit analysis to ensure credibility. Through the design charts obtained from the current investigation, the stability of slopes can be assessed under seismic conditions. It can be observed that the extreme slope profile demands a flat configuration to endure the condition of the limiting equilibrium at a higher level of seismicity. However, a concurrent enhancement in the shear strength of the slope medium suppresses this tendency by offering greater resistance to the seismic inertial forces induced in the medium. Unlike the traditional linear slopes, the extreme slope profiles mostly exhibit a steeper layout over a significant part of the slope height, thus ensuring a more optimized solution to the slope stability problem. Further, the susceptibility of the Longnan slope failure in the Huining-Wudu seismic belt is predicted using the current plasticity approach, which is found to be in close agreement with a case study reported in the literature. Finally, the concept of equivalent single or multi-tiered planar slopes is explored through an example problem, which exhibits the appropriateness of the proposed non-linear slope geometry under actual field conditions.