• Title/Summary/Keyword: Belief and Plausibility Functions

Search Result 3, Processing Time 0.017 seconds

Dempster-Shafer Fusion of Multisensor Imagery Using Gaussian Mass Function (Gaussian분포의 질량함수를 사용하는 Dempster-Shafer영상융합)

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.6
    • /
    • pp.419-425
    • /
    • 2004
  • This study has proposed a data fusion method based on the Dempster-Shafer evidence theory The Dempster-Shafer fusion uses mass functions obtained under the assumption of class-independent Gaussian assumption. In the Dempster-Shafer approach, uncertainty is represented by 'belief interval' equal to the difference between the values of 'belief' function and 'plausibility' function which measure imprecision and uncertainty By utilizing the Dempster-Shafer scheme to fuse the data from multiple sensors, the results of classification can be improved. It can make the users consider the regions with mixed classes in a training process. In most practices, it is hard to find the regions with a pure class. In this study, the proposed method has applied to the KOMPSAT-EOC panchromatic image and LANDSAT ETM+ NDVI data acquired over Yongin/Nuengpyung. area of Kyunggi-do. The results show that it has potential of effective data fusion for multiple sensor imagery.

FMEA for rotorcraft landing system using Dempster-Shafer evidence theory (Dempster-Shafer 증거 이론을 이용한 회전익 항공기 착륙장치의 FMEA)

  • Na, Seong-Hyeon;So, Hee-Soup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.76-84
    • /
    • 2021
  • The quality assurance activities can detect the factors that affect the quality based on risk identification in the course of mass production. Risk identification is conducted with risk analysis, and the risk analysis method for the rotorcraft landing system is selected by failure mode effects analysis (FMEA). FMEA is a method that detects the factors that can affect the product quality by combining severity, occurrence, and detectability. The results of FMEA were prioritized using the risk priority number. On the other hand, these methods have certain shortcomings because the severity, occurrence, detectability are weighted equally. Dempster-Shafer evidence theory can conduct uncertainty analysis for the opinions with personal reflections and subjectivity. Based on the theory, the belief function and the plausibility function can be formed. Moreover, the functions can be utilized to evaluate the belief rate and credibility. The system is exposed to impact during take-off and landing. Therefore, experts should manage failure modes in the course of mass production. In this paper, FMEA based on the Dempster-Shafer evidence theory is discussed to perform risk analysis regarding the failure mode of the rotorcraft landing system. The failure priority was evaluated depending on the factor values. The results were derived using belief and plausibility function graphs.

TREATING UNCERTAINTIES IN A NUCLEAR SEISMIC PROBABILISTIC RISK ASSESSMENT BY MEANS OF THE DEMPSTER-SHAFER THEORY OF EVIDENCE

  • Lo, Chung-Kung;Pedroni, N.;Zio, E.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.11-26
    • /
    • 2014
  • The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk assessment is typically limited, so that the analysis must strongly rely on expert judgments. In this paper, a Dempster-Shafer Theory (DST) framework for handling uncertainties in NPP SPRAs is proposed and applied to an example case study. The main contributions of this paper are two: (i) applying the complete DST framework to SPRA models, showing how to build the Dempster-Shafer structures of the uncertainty parameters based on industry generic data, and (ii) embedding Bayesian updating based on plant specific data into the framework. The results of the application to a case study show that the approach is feasible and effective in (i) describing and jointly propagating aleatory and epistemic uncertainties in SPRA models and (ii) providing 'conservative' bounds on the safety quantities of interest (i.e. Core Damage Frequency, CDF) that reflect the (limited) state of knowledge of the experts about the system of interest.