• Title/Summary/Keyword: Belgian road

Search Result 17, Processing Time 0.025 seconds

Fatigue Strength Evaluation of LCV Leaf spring Considering Road Load Response II (도로 하중조건을 고려한 상용차 판스프링의 피로강도 평가 II)

  • Sohn, Il-Seon;Bae, Dong-Ho;Jung, Won-Seok;Jung, Won-Wook;Park, Sun-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1127-1132
    • /
    • 2003
  • Suspension system of vehicle have enough endurance during its life time to protect passenger. Spring is one of major part of vehicle. Thus, a fatigue strength evaluation for leaf spring based on road load response was carried out. At first, strain of leaf spring is measured on the city condition and proving ground condition. And next, the damage analysis of road load response data was carried out. And fatigue test of leaf spring were also carried out. Based on -N life relation, fatigue life of leaf spring was evaluated at belgian mode, city mode and drawing test specification. After that, it is compared the design life of leaf spring and evaluated fatigue life by belgian mode, city mode and drawing test specification. From the above, the maximum load-fatigue life relation of leaf spring was defined by test. and new test target of belgian mode and city mode was proposed to accept design specification of leaf spring. It is expect that proposed test target can verify leaf spring fatigue endurance at specific road condition.

  • PDF

Realization Software Development of Road Profile for Multi-axial Road Simulator (다축 로드 시뮬레이터의 노면 프로파일 재현 소프트웨어 개발)

  • 정상화;류신호;김우영;양성모;김택현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.190-198
    • /
    • 2002
  • Full scale durability test in the laboratory is an essential of any fatigue life evaluation of components or structures of the automotive vehicle. Component testing is particularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, hydraulic road simulator is used to carry out the fatigue test and the vibration test. In this paper, the algorithm and software to realize the real road profile are developed. The operation software for simultaneously controlled multi-axial road simulator is developed and the input and output data are displayed window based PC controller in the real time. Futhermore, the software to generate the real road profile are developed. The validity of the software are verified by applying the belgian road, the city road, the highway, and the gravel road. The results of the above experiment show that the real road profiles are realized well after 10th iteration.

COMPUTATIONAL DURABILITY PREDICTION OF BODY STRUCTURES IN PROTOTYPE VEHICLES

  • Kim, H.-S.;Yim, H.-J.;Kim, C.-B.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.129-135
    • /
    • 2002
  • Durability estimation of a prototype vehicle has traditionally relied heavily on accelerated durability tests using predefined proving grounds or rig tests using a road simulator. By use of those tests, it is very difficult to predict durability failures in actual service environments. This motivated the development of an integrated CAE (Computer Aided Engineering) methodology for the durability estimation of a prototype vehicle in actual service environments. Since expensive computational costs such as computation time and hardware resources are required for a full vehicle simulation in those environments with a very long span of event time, the conventional CAE methodologies have little feasibility. An efficient computational methodology for durability estimations is applied with theoretical developments. The effectiveness of the proposed methodology is shown by the comparison of results of the typical actual service environment such as the city mode with those of the typical accelerated durability test over the Belgian road.

Fatigue Analysis of Vehicle Chassis Component Considering Resonance Frequency (공진 주파수를 고려한 차량 섀시 부품의 피로해석)

  • Lee Sang Beom;Yim Hong Jae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.94-101
    • /
    • 2004
  • The purpose of this raper is to assess the benefits of frequency domain fatigue analysis and compare it with more conventional time domain techniques. The multi-body dynamic analysis, FE analysis and fatigue life prediction technique are applied for the frequency domain fatigue analysis. To obtain the dynamic load history used in the frequency domain fatigue analysis, the computer simulations running over typical road Profiles are carried out by utilizing vehicle dynamic model. The fatigue life estimation for the rear suspension system of small-sized passenger car is performed by using resonance durability analysis technique, and the estimation results are compared with the conventional quasi-static durability analysis results. For the pothole simulation, the percent changes, of the fatigue life between the two durability analysis techniques don't exceed 10%. But for the Belgian road simulation because of the resonance effect, the fatigue life using the resonance durability analysis technique are much smaller estimated than the quasi-static durability analysis results.

Development of Road Profile Realization Software (로드 프로파일 재현 소프트웨어 개발)

  • 류신호;정상화;김우영;나윤철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.265-268
    • /
    • 1997
  • In the recent day, fatigue life prediction techniques play a major role in the design of components in the ground vehicle industry. Full scale durability testing in the laboratory is an essential of any fatigue life evaluation of components or structures of the automotwe vehicle. Component testing is part~cularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, multi-axial road simulator is used to carry out the fatigue test and the vibration test. In this paper, the algorithm and software to realize the real road profile are developed. The validity of the software are verified by applying the belgian road, the city road, the highway, and the gravel road. The results of the above experiment show that the real road profiles are realized well after loth iteration.

  • PDF

Development of 3-axis Road Simulator (3축 로드 시뮬레이터 개발)

  • Choi, G.R.;Jeon, S.B.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.3
    • /
    • pp.15-22
    • /
    • 2008
  • The road simulators have become common tools within the automotive industry for evaluation of vehicle and vehicle system durability performance. These simulators need appropriate input signal generation algorithms to realize the actual driving conditions due to non-linear vehicle and test rig behaviour. Although somewhat unconventional from a control standpoint, the iteration approach has proven to be a very effective method for control of complex, multiple degree-of-freedom systems where the tracking parameter is known a priori. In this paper, the road profile replication algorithm is verified by applying Belgian road to the developed road simulator. The simulation and experimental results are included to evaluate the performance of this simulator. This road simulator provides considerable savings in cost, development time, and testing risk during developing automotive components.

  • PDF

A Research on Dynamic Behavior of Clamshell Hood to Secure the Safety and Durability Performance

  • Kyoungtaek Kwak;Seunghoon Kang;Jaedong Yoo;Kyungdug Seo;Youngchul Shin;Kyungsup Chun;Jaekyu Lee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.1
    • /
    • pp.7-15
    • /
    • 2023
  • The purpose of this study is to predict the dynamic behavior of clamshell hood system on the harsh road driving condition, and secure the safety and durability performance of the system. The equation of motion of hood system is derived and the numerical analysis is implemented to obtain the lateral movement of the hood system. Also, the actual Belgian road test results are correlated to the predicted ones, and confirm the reliability of the system. Then, the parameter study is conducted to figure out the sensitive factors to affect the dynamic behavior, and the engineering design guide to make the system robust to confine the minimum friction force generated from hood latch and maximum hood weight is suggested from this research.

The Study on Sensitivity Analysis of Domestic Road using PSD (PSD선도를 이용한 국내노면의 민감도 분석에 관한 연구)

  • Bae, Chul-Yong;Kim, Chan-Jung;Kwon, Seong-Jin;Lee, Bong-Hyun;Kim, Hyun-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.326-331
    • /
    • 2006
  • The durability of recent motors is longer than the past one because there are the rapid technique development of the automobile industry and the vehicle maintenance of users. And then the importance of the durability test due to vibration is increased from day to day. So full vehicle and parts companies accomplish the durability test using various methods. The most public test method among them is the reliable field test but it bring on higher cost and period of the development process. The durability test using MAST(multi axis simulation table) is a solution in order to improve the development process of automobiles. Generally its excitation source uses the optimized road profiles that are obtained by the road test of belgian road, country road, cobbleston road and so on instead of a real field but the interrelations and influences accordingly vehicle damage are considered by a field test between specific roads and real fields in the first place. Therefore this study, in order to accomplish a basic research for the durability test using the MAST, performed on the real field driving test at various domestic roads and the results which are analyzed by PSD(power spectrum density) are compared with relative sensitivity among the roads. Consequently they can present a basic material for generation of road profiles which is applied to the durability test using MAST.

  • PDF

Analysis of Durability of Vehicle Chassis Part in Virtual Test Lab (가상내구시험을 통한 차량 샤시 부품 내구성 예측에 관한 연구)

  • Cho, ByungKwan;Ha, Jungho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.747-752
    • /
    • 2013
  • Recently, virtual test laboratory techniques have been widely used to reduce vehicle development costs and time. In this study, a virtual durability test process using multibody dynamics simulation and fatigue simulation is proposed. The flexible multibody model of the front half of a car suspension is solved using road loads that are measured from durability test courses such as a Belgian road. To verify the simulation results, the measured loads of components and simulation results are collated.

Development of 3-axis Loadcell for Measuring the Side Force of MPV Using Design of Experiment (실험계획법을 이용한 다목적 차량의 측면하중 측정을 위한 3축 로드셀 개발)

  • Chu, Sung-Il;Park, Jun-Hyub;Lee, Jin-Gun;Park, Ji-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.83-93
    • /
    • 2007
  • This paper represents the development of 3-axises loadcell for measuring the side-force of suspension module of MPV(Multi Purposed Vehicle). The side force causes the failure of damper, such as leakage. The loadcell was developed using strain gauges, and the Wheastone bridge circuit to compensate for the cross-talk between the each axises and the measurement error by temperature. Structure analysis of loadcell was accomplished with FEM(Finite Element Method) to optimize the location of strain gages. The design optimization for important factors that have an effect on performance of loadcell was accomplished by using DOE(Design of Experiment). Loadcell was produced and successfully tested, showing good sensitivity and low cross-talk. The cross-talk of the developed loadcell is bellow 5%. The load history was measured at proving ground. The maximum side-force, the longitudinal force, and vertical force of MPV are 4.2 kN, 8.0 kN, and 17.0 kN, respectively, at Belgian road.