• 제목/요약/키워드: Behaviour pattern

검색결과 161건 처리시간 0.026초

Axial behavior of CFRP wrapped RC columns of different shapes with constant slenderness ratio

  • Narule, Giridhar N.;Bambole, Abhay N.
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.679-687
    • /
    • 2018
  • In composite materials technology, the fiber-reinforced polymers (FRP) have opened up new horizons in infrastructural engineering field for strengthening existing structures and components of structure. The Carbon fiber reinforced polymer (CFRP) sheets are well suited for RC columns to this application because of their high strength to weight ratio, good fatigue properties and excellent resistance to corrosion. The main focus of present experimental work is to investigate effect of shapes on axial behavior of CFRP wrapped RC columns having same cross-sectional area and slenderness ratio. The CFRP volumetric ratio and percentage of steel are also adopted constant for all the test specimens. A total of 18 RC columns with slenderness ratio four were cast. Nine columns were control and the rest of nine columns were strengthened with one layer of CFRP wrap having 35 mm of corner radius. Columns confined with CFRP wrap were designed using IS: 456:2000 and ACI 440.2R.08 provisions. All the test specimens were loaded for axial compression up to failure and failure pattern for each shaped column was investigated. All the experimental results were compared with analytical values calculated as per the ACI-440.2R-08 code. The test results clearly demonstrated that the axial behavior of CFRP confined RC columns is affected with the change in shapes. The axial deformation is higher in CFRP wrapped RC circular column as compared to square and rectangular columns. Stress-strain behaviour revealed that the yield strength gained from CFRP confinement was significant for circular columns as compare to square and rectangular columns. This behaviour may be credited due to effect of shape on lateral deformation in case of CFRP wrapped circular columns at effective confinement action.

Numerical modelling of internal blast loading on a rock tunnel

  • Zaid, Mohammad;Sadique, Md. Rehan
    • Advances in Computational Design
    • /
    • 제5권4호
    • /
    • pp.417-443
    • /
    • 2020
  • Tunnels have been an integral part of human civilization. Due to complexity in its design and structure, the stability of underground structures under extreme loading conditions has utmost importance. Increased terrorism and geo-political conflicts have forced the engineers and researchers to study the response of underground structures, especially tunnels under blast loading. The present study has been carried out to seek the response of tunnel structures under blast load using the finite element technique. The tunnel has been considered in quartzite rock of northern India. The Mohr-Coulomb constitutive model has been adopted for the elastoplastic behaviour of rock. The rock model surrounding the tunnel has dimensions of 30 m x 30 m x 35 m. Both unlined and lined (concrete) tunnel has been studied. Concrete Damage Plasticity model has been considered for the concrete lining. Four different parameters (i.e., tunnel diameter, liners thickness, overburden depth and mass of explosive) have been varied to observe the behaviour under different condition. To carry out blast analysis, Coupled-Eulerian-Lagrangian (CEL) modelling has been adopted for modelling of TNT (Trinitrotoluene) and enclosed air. JWL (Jones-Wilkins-Lee) model has been considered for TNT explosive modelling. The paper concludes that deformations in lined tunnels follow a logarithmic pattern while in unlined tunnels an exponential pattern has been observed. The stability of the tunnel has increased with an increase in overburden depth in both lined and unlined tunnels. Furthermore, the tunnel lining thickness also has a significant effect on the stability of the tunnel, but in smaller diameter tunnel, the increase in tunnel lining thickness has not much significance. The deformations in the rock tunnel have been decreased with an increase in the diameter of the tunnel.

Study of tensile behavior of Y shape non-persistent joint using experimental test and numerical simulation

  • Sarfarazi, V.;Hajiloo, M.;Ghalam, E. Zarrin;Ebneabbasi, P.
    • Computers and Concrete
    • /
    • 제26권6호
    • /
    • pp.565-576
    • /
    • 2020
  • Experimental and discrete element methods were used to investigate the effects of angle of Y shape non-persistent joint on the tensile behaviour of joint's bridge area under brazilian test. concrete samples with diameter of 100 mm and thikness of 40 mm were prepared. Within the specimen, two Y shape non-persistent notches were provided. The large notch lengths were 6 cm, 4 cm and 2 cm. the small notch lengths were 3 cm, 2 cm and 1 cm. The angle of larger notch related to horizontal axis was 0°, 30°, 60°, 90°. Totally, 12 different configuration systems were prepared for Y shape non-persistent joints. Also, 18 models with different Y shape non-persistent notch angle and notch length were prepared in numerical model. The large notch lengths were 6 cm, 4 cm and 2 cm. the small notch lengths were 3 cm, 2 cm and 1 cm. The angle of larger notch related to horizontal axis was 0, 30, 60, 90, 120 and 150. Tensile strength of model materil was 1 MPa. The axial load was applied to the model by rate of 0.02 mm/sec. This testing showed that the failure process was mostly governed by the Y shape non-persistent joint angle and joint length. The tensile strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. It was shown that the tensile behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint length and joint angle. The minimum tensile strength occurs when the angle of larger joint related to horizontal axis was 60°. Also, the maximum compressive strength occurs when the angle of larger joint related to horizontal axis was 90°. The tensile strength was decreased by increasing the notch length. The failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods.

Physical test and PFC2D simulation of the failure mechanism of echelon joint under uniaxial compression

  • Sarfarazi, V.;Abharian, S.;Ghalam, E. Zarrin
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.99-109
    • /
    • 2021
  • Experimental and discrete element methods were used to investigate the effects of echelon non-persistent joint on the failure behaviour of joint's bridge area under uniaxial compressive test. Concrete samples with dimension of 150 mm×100 mm×50 mm were prepared. Uniaxial compressive strength and tensile strength of concrete were 14 MPa and 1MPa, respectivly. Within the specimen, three echelon non-persistent notches were provided. These joints were distributed on the three diagonal plane. the angle of diagonal plane related to horizontal axis were 15°, 30° and 45°. The angle of joints related to diagonal plane were 30°, 45°, 60°. Totally, 9 different configuration systems were prepared for non-persistent joint. In these configurations, the length of joints were taken as 2 cm. Similar to those for joints configuration systems in the experimental tests, 9 models with different echelon non-persistent joint were prepared in numerical model. The axial load was applied to the model by rate of 0.05 mm/min. the results show that the failure process was mostly governed by both of the non-persistent joint angle and diagonal plane angle. The compressive strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. It was shown that the shear behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint angle. The strength of samples increase by increasing both of the joint angle and diagonal plane angle. The failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods.

Effects of number and angle of T Shape non persistent cracks on the failure behavior of samples under UCS test

  • Sarfarazi, V.;Asgari, K.;Maroof, S.;Fattahi, Sh
    • Computers and Concrete
    • /
    • 제29권1호
    • /
    • pp.31-45
    • /
    • 2022
  • Experimental and numerical simulation were used to investigate the effects of angle and number of T shape non-persistent crack on the shear behaviour of crack's bridge area under uniaxial compressive test. concrete samples with dimension of 150 mm×150 mm×40 mm were prepared. Within the specimen, T shape non-persistent notches were provided. 16 different configuration systems were prepared for T shape non-persistent crack based on two and three cracks. In these configurations, the length of cracks were taken as 4 cm and 2 cm based on the cracks configuration systems. The angle of larger crack related to horizontal axis was 0°, 30°, 60° and 90°. Similar to cracks configuration systems in the experimental tests, 28 models with different T shape non-persistent crack angle were prepared in numerical model. The length of cracks were taken as 4 cm and 2 cm based on the cracks configuration systems. The angle of larger crack related to horizontal axis was 0°, 15°, 30°, 45°, 60°, 75° and 90°. Tensile strength of concrete was 1 MPa. The axial load was applied to the model. Displacement loading rate was controlled to 0.005 mm/s. Results indicated that the failure process was significantly controled by the T shape non-persistent crack angle and crack number. The compressive strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the crack number and crack angle. The strength of samples decreased by increasing the crack number. In addition, the failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods (PFC2D).

Behavior of F shape non-persistent joint under experimental and numerical uniaxial compression test

  • Sarfarazi, Vahab;Asgari, Kaveh;Zarei, Meisam;Ghalam, Erfan Zarrin
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.199-213
    • /
    • 2022
  • Experimental and discrete element approaches were used to examine the effects of F shape non-persistent joints on the failure behaviour of concrete under uniaxial compressive test. concrete specimens with dimensions of 200 cm×200 cm×50 cm were provided. Within the specimen, F shape non-persistent joint consisting three joints were provided. The large joint length was 6 cm, and the length of two small joints were 2 cm. Vertical distance between two small joints change from 1.5 cm to 4.5 cm with increment of 1.5 cm. In constant joint lengths, the angle of large joint change from 0° to 90° with increments of 30°. Totally 12 different models were tested under compression test. The axial load rate on the model was 0.05 mm/min. Concurrent with experimental tests, numerical simulation (Particle flow code in two dimension) were performed on the models containing F shape non-persistent joint. Distance between small joints and joint angles were similar to experimental one. the results indicated that the failure process was mostly governed by both of the Distance between small joints and joint angles. The axial loading rate on the model was 0.05 mm/min. The compressive strengths of the samples were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint angle. In the first, there were only a few acoustic emission (AE) hits in the initial stage of loading, and then AE hits rapidly grow before the applied stress reached its peak. Furthermore, a large number of AE hits accompanied every stress drop. Finally, the failure pattern and failure strength are similar in both approaches i.e., the experimental testing and the numerical simulation approaches.

Light-Dark and Food Restriction Cycles in Red sea bream, Pagrus major: Effect of Zeitgebers on Demand-feeding Rhythms

  • Choe Yong-Gwon;Choi Jae-Eun;Roh Duk-Whan;Bae Bong-Seong;Choi Cheol-Young
    • Fisheries and Aquatic Sciences
    • /
    • 제4권3호
    • /
    • pp.138-143
    • /
    • 2001
  • Red sea bream, Pagrus major a fish species characterized by its dualistic feeding pattern, was investigated to study the synchronizing effect of light and food on the demand-feeding rhythm. Nocturnal and diurnal red sea bream, both in groups and individually, were exposed to restricted-feeding and Light-Dark cycles of different periods. The phase relationship between both zeitgebers was also studied. In some cases, food availability restricted to the light or dark phase contrary to that of the previous feeding phase changed a diurnal feeding pattern into nocturnal and vice versa, suggesting that food can be one of the switching factors that decides whether the circadian system of red sea bream is diurnal or nocturnal. However, the fact that the feeding pattern of some fish was unrelated with the phase in which food was available suggests that other internal and/or external-factors could be involved in the temporal flexibility of red sea bream.

  • PDF

다중 침입 탐지 모델의 설계와 분석 (Design and Analysis of Multiple Intrusion Detection Model)

  • 이요섭
    • 한국전자통신학회논문지
    • /
    • 제11권6호
    • /
    • pp.619-626
    • /
    • 2016
  • 침입 탐지 모델은 침입 행위가 발생할 때 침입을 탐지하기 위해 사용하는 모델로서 침입 패턴을 잘 표현하기 위해서는 먼저 침입 패턴의 유형에 대해 분석하고 각 유형별로 침입 패턴에 대한 표현 방법을 제공할 수 있어야 한다. 특히 하나의 호스트 레벨의 침입뿐만 아니라 다중 호스트를 이용한 네트워크 레벨의 침입을 탐지하기 위해서는 이러한 다중 침입의 유형을 정의하고 다중 침입에 대한 표현 방법을 제공해야 한다. 본 논문에서는 침입 탐지 시스템의 안전성에 대한 검증 방법을 제공하는 다중 침입 탐지 모델을 제안하고 제안한 모델의 안전성을 검증하며 다른 모델들과 비교 평가한다.

2D numerical modelling of soil-nailed structures for seismic improvement

  • Panah, Ali Komak;Majidian, Sina
    • Geomechanics and Engineering
    • /
    • 제5권1호
    • /
    • pp.37-55
    • /
    • 2013
  • An important issue in the design of soil-nailing systems, as long-term retaining walls, is to assess their stability during seismic events. As such, this study is aimed at simulating the dynamic behavior and failure pattern of nailed structures using two series of numerical analyses, namely dynamic time history and pseudo-static. These numerical simulations are performed using the Finite Difference Method (FDM). In order to consider the actual response of a soil-nailed structure, nonlinear soil behaviour, soil-structure interaction effects, bending resistance of structural elements and construction sequences have been considered in the analyses. The obtained results revealed the efficiency of both analysis methods in simulating the seismic failure mechanism. The predicted failure pattern consists of two sliding blocks enclosed by three slip surfaces, whereby the bottom nails act as anchors and the other nails hold a semi-rigid soil mass. Moreover, it was realized that an increase in the length of the lowest nails is the most effective method to improve seismic stability of soil-nailed structures. Therefore, it is recommended to first estimate the nails pattern for static condition with the minimum required static safety factor. Then, the required seismic stability can be obtained through an increase in the length of the lowest nails. Moreover, placement of additional long nails among lowest nails in existing nailed structures can be considered as a simple retrofitting technique in seismic prone areas.

미취학 아동들의 식이섭취행태와 유치우식증과의 관련성 (Association between diet pattern and dental caries among preschool children)

  • 빈성오;이정희;정성화;김혜영
    • 한국학교ㆍ지역보건교육학회지
    • /
    • 제12권3호
    • /
    • pp.89-99
    • /
    • 2011
  • Objectives: The aim of this study was to assess an association between nutrient intake and prevalence risk of deciduous dental caries among preschool children. Methods: A total of 922 children aged 3 to 5 years was selected from the database of Fourth Korean National Health and Nutrition Examination Survey(KNHAINS). Data were included socio-demographic characteristics, oral health related behaviour, nutrient intake(carbohydrate, protein, fat, calcium, phosphate, iron, sodium and potassium), and oral health status(dft index). To assess the crude and adjusted associations, logistic regression analysis were applied considering a complex sampling design. Results: Children who were more consumed protein, calcium, phosphate, iron and sodium had slightly lower prevalence risk of deciduous dental caries after adjusting for socio-demographic characteristics and oral health related behaviour. Moreover, prevalence risk of the highest intake of phosphate and sodium(3rd tertiles) was significant lower than that of the lowest intake(1st tertiles). Conclusion: The nutrient intake was slightly associated with the prevalence risk of deciduous dental caries.

  • PDF