• 제목/요약/키워드: Behavioral plasticity

검색결과 34건 처리시간 0.031초

Fiber element-based nonlinear analysis of concrete bridge piers with consideration of permanent displacement

  • Ansari, Mokhtar;Daneshjoo, Farhad;Safiey, Amir;Hamzehkolaei, Naser Safaeian;Sorkhou, Maryam
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.243-255
    • /
    • 2019
  • Utilization of fiber beam-column element has gained considerable attention in recent years due mainly to its ability to model distributed plasticity over the length of the element through a number of integration points. However, the relatively high sensitivity of the method to modeling parameters as well as material behavior models can pose a significant challenge. Residual drift is one of the seismic demands which is highly sensitive to modeling parameters and material behavior models. Permanent deformations play a prominent role in the post-earthquake evaluation of serviceability of bridges affected by a near-fault ground shaking. In this research, the influence of distributed plasticity modeling parameters using both force-based and displacement-based fiber elements in the prediction of internal forces obtained from the nonlinear static analysis is studied. Having chosen suitable type and size of elements and number of integration points, the authors take the next step by investigating the influence of material behavioral model employed for the prediction of permanent deformations in the nonlinear dynamic analysis. The result shows that the choice of element type and size, number of integration points, modification of cyclic concrete behavior model and reloading strain of concrete significantly influence the fidelity of fiber element method for the prediction of permanent deformations.

Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134-mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression

  • Wang, Guoli;An, Tianyue;Lei, Cong;Zhu, Xiaofeng;Yang, Li;Zhang, Lianxue;Zhang, Ronghua
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.376-386
    • /
    • 2022
  • Background: Brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) plays a critical role in the pathogenesis of depression by modulating synaptic structural remodeling and functional transmission. Previously, we have demonstrated that the ginsenoside Rb1 (Rb1) presents a novel antidepressant-like effect via BDNF-TrkB signaling in the hippocampus of chronic unpredictable mild stress (CUMS)-exposed mice. However, the underlying mechanism through which Rb1 counteracts stress-induced aberrant hippocampal synaptic plasticity via BDNF-TrkB signaling remains elusive. Methods: We focused on hippocampal microRNAs (miRNAs) that could directly bind to BDNF and are regulated by Rb1 to explore the possible synaptic plasticity-dependent mechanism of Rb1, which affords protection against CUMS-induced depression-like effects. Results: Herein, we observed that brain-specific miRNA-134 (miR-134) could directly bind to BDNF 30 UTR and was markedly downregulated by Rb1 in the hippocampus of CUMS-exposed mice. Furthermore, the hippocampus-targeted miR-134 overexpression substantially blocked the antidepressant-like effects of Rb1 during behavioral tests, attenuating the effects on neuronal nuclei-immunoreactive neurons, the density of dendritic spines, synaptic ultrastructure, long-term potentiation, and expression of synapse-associated proteins and BDNF-TrkB signaling proteins in the hippocampus of CUMS-exposed mice. Conclusion: These data provide strong evidence that Rb1 rescued CUMS-induced depression-like effects by modulating hippocampal synaptic plasticity via the miR-134-mediated BDNF signaling pathway.

Advancing behavioral understanding and damage evaluation of concrete members using high-resolution digital image correlation data

  • Sokoli, Drit;Shekarchi, William;Buenrostro, Eliud;Ghannoum, Wassim M.
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.609-626
    • /
    • 2014
  • The capabilities of a high-resolution Digital Image Correlation (DIC) system are presented within the context of deformation measurements of full-scale concrete columns tested under reversed cyclic loading. The system was developed to have very high-resolution such that material strains on the order of the cracking stain of concrete could be measured on the surface of full-scale structural members. The high-resolution DIC system allows the measurement of a wide range of deformations and strains that could only be inferred or assumed previously. The DIC system is able to resolve the full profiles of member curvatures, rotations, plasticity spread, shear deformations, and bar-slip induced rotations. The system allows for automatic and objective measurement of crack widths and other damage indices that are indicative of cumulated damage and required repair time and cost. DIC damage measures contrast prevailing proxy damage indices based on member force-deformation data and subjective damage measures obtained using visual inspection. Data derived from high-resolution DIC systems is shown to be of great use in advancing the state of behavioral knowledge, calibrating behavioral and analytical models, and improving simulation accuracy.

Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission

  • Park, Hye Jin;Lee, Seungheon;Jung, Ji Wook;Lee, Young Choon;Choi, Seong-Min;Kim, Dong Hyun
    • Biomolecules & Therapeutics
    • /
    • 제24권4호
    • /
    • pp.433-437
    • /
    • 2016
  • Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and $100{\mu}g/ml$) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol.

불안의 생물학적 근원 (The Neurobiology of Anxiety)

  • 석정호;김세주;김찬형
    • 대한불안의학회지
    • /
    • 제1권1호
    • /
    • pp.7-13
    • /
    • 2005
  • Anxiety is one of the basic emotions which human experiences across different cultures in the world and it can be observed in mammals. Our understanding of the neurobiology of this emotion has made some advances, even though it has not been completed, with the development and advance in the investigation method including neuroimaging, neurochemical, and genetic approaches. In this article, the neuroanatomical and neurochemical basis of anxiety is reviewed. The amygdaloid complex has been known to playa key role in processing of anxiety or fear. It has extensive afferent and/or efferent connections with cortical and subcortical structures. The mesial temporal structures including hippocampus appear to be involved in acquisition of anxiety and related behaviors. The prefrontal cortical structures appear to play important roles in conscious awareness of anxiety and in modulating anxiety and related behavior. The bed nucleus of the stria terminalis (BNST) is known to playa critical role in unconditioned fear response. The central noradrenergic system and hypothalamo-pituitary-adrenal axis are known to play important roles in modulating and expressing anxiety-related responses. Anxiety has been gathering attentions from many investigators and numerous preclinical and clinical investigations of anxiety and anxiety disorders have been done. In particular, neural plasticity in critical period and the psychobiological factors related to resilience to extreme stress and anxiety are important issues in this field.

  • PDF

압축력을 받는 콘크리트에 대한 세 직교 응력 성분을 이용한 소성 모델 (Plasticity Model Using Three Orthogonal Stress Components for Concrete in Compression)

  • 김재요;박홍근
    • 콘크리트학회논문집
    • /
    • 제16권3호
    • /
    • pp.345-356
    • /
    • 2004
  • 다양한 압축 응력 상태에서의 콘크리트의 거동 특성을 나타내기 위한 소성 모델을 개발하였다. 응력 성분은 압축 상태에서 각각의 거동특성을 갖는 세 개의 직교 성분으로 분리하였다. 각 성분의 거동 특성을 독립적으로 나타내기 위하여 각 성분에 대한 독립적인 다중 파괴기.준을 이용하는 소성모델을 적용하였다. 각 파괴면은 실험결과에 근거하여 각 파괴기준에 대한 등가 소성 변형률에 의하여 정의하였다. 또한, 압축손상에 의한 체적팽창을 나타내기 위한 간단한 비상관 소성흐름법칙을 제안하였다. 제안된 모델은 다양한 재료 특성 및 응력 상태를 갖는 기존의 실험 결과들과 비교를 통하여 검증되었다. 이 비교는 기존의 소성모델보다 제안된 모델의 적용성이 우수함을 입증하고 있다.

Delayed Intraventricular Nogo Receptor Antagonist Promotes Recovery from Stroke by Enhancing Axonal Plasticity

  • Kim, Tae-Won;Lee, Jung-Kil;Joo, Sung-Pil;Kim, Tae-Sun;Kim, Jae-Hyoo;Kim, Soo-Han
    • Journal of Korean Neurosurgical Society
    • /
    • 제39권2호
    • /
    • pp.130-135
    • /
    • 2006
  • Objective : After ischemic stroke, partial recovery of function frequently occurs and may depend on the plasticity of axonal connections. Here, we examine whether blockade of the Nogo/NogoReceptor[NgR] pathway might enhance axonal sprouting and thereby recovery after focal brain infarction. Methods : Adult male Sprague Dawley rats weighing $250{\sim}350g$ were used. Left middle cerebral artery occlusion[MCAO] was induced with a intraluminal filament. An osmotic mini pump [Alzet 2ML4, Alza Scientific Products, Palo Alto, CA] for the infusion of NgR-Ecto[310]-Fc to block Nogo/NgR pathway was implanted 1 week after cerebral ischemia. Prior to induction of ischemia, all animals received training in the staircase and rotarod test. Two weeks after biotin dextran amine injection, animals were perfused transcardially with PBS, followed by 4% paraformadehyde/PBS solution. Brain and cervical spinal cord were dissected. Eight coronal sections spaced at 1mm intervals throughout the forebrain of each animal with cresyl violet acetate for determination of infarction size. Images of each section were digitized and the infarct area per section was measured with image analysis software. Results : Histological examination at 11 weeks post-MCAO demonstrates reproducible stroke lesions and no significant difference in the size of the stroke between the NgR[310]Ecto-Fc protein treated group and the control group. Behavioral recovery is significantly better and more rapid in the NgR-Ecto[310]-Fe treated group. Blockade of NgR enhances axonal sprouting from the uninjured cerebral cortex and improves the return of motor task performance. Conclusion : Pharmacological interruption of NgR allows a greater degree of axonal plasticity in response this is associated with improved functional recovery of complicated motor tasks.

Associations of Ubiquitin-Specific Protease Genes with Resilience and Social Anxiety in Healthy Youths

  • Seo, Jun Ho;Park, Chun Il;Kim, Se Joo;Kang, Jee In
    • 대한불안의학회지
    • /
    • 제15권2호
    • /
    • pp.122-126
    • /
    • 2019
  • Objective : Dynamic proteolysis, through the ubiquitin-proteasome system, is an important molecular mechanism for the constant regulation of synaptic plasticity and stress responses in humans. In this study, we examined whether genetic variants in the ubiquitin-specific peptidase (USP) genes were associated with psychological traits of resilience and susceptibility to neuropsychiatric disorders for each gender. Methods : A total of 344 Korean healthy youths (190 males, 154 females) were included in the study. A genotyping of rs2241646 of USP2 and rs346006 of USP46 was performed. The Connor-Davidson Resilience Scale and Brief Fear of Negative Evaluation Scale were administered for measuring trait resilience and social anxiety, respectively. The genetic associations of the USP variants were tested using multiple analyses of covariance with psychological traits as dependent variables after controlling for age in each gender. Results : For USP2 rs2241646, women with the TT genotype showed significantly higher resilience and lower social anxiety, as compared to those carrying the C allele. There were no associations between USP46 rs346005 and the psychological traits in both genders. Conclusions : The present study showed a possible genetic association between the USP2 rs2241646 and stress resilience and trait anxiety in women. The findings suggest that ubiquitin-proteasome system may be related to the resilience and susceptibility to stress-related neuropsychiatric disorders such as anxiety disorders, possibly through the regulation of dynamic proteolysis responses to stress.

주기하중을 받는 철근 콘크리트 면부재에 대한 통합구성모델 (Unified Constitutive Model for RC Planar Members Under Cyclic Load)

  • 김재요;박홍근
    • 콘크리트학회논문집
    • /
    • 제14권2호
    • /
    • pp.239-248
    • /
    • 2002
  • 철근 콘크리트 면부재의 주기거동을 나타내기 위하여 소성모델과 손상모델의 통합구성모델을 개발하였다. 인장-압축을 받는 콘크리트의 응력은 개념적으로 콘크리트의 스트럿 작용에 의한 압축응력과 인장균열에 의한 인장응력의 합으로 정의하였다. 인장균열의 비등방손상에 의하여 영향을 받는 압축파괴의 등방손상을 나타내기 위하여 다중파괴기준을 갖는 소성모델을 사용하였으며, 다중균열 방향에서 인장응력-변형률 관계를 나타내기 위하여 다중고정균열손상모델과 인장균열의 소성유동모델의 개념을 사용하였다. 이러한 통합모델은 주기 인장-압축 상태의 철근 콘크리트의 거동측성, 즉 다중 인장균열 방향, 점진적으로 회전하는 균열 손상, 콘크리트의 압축파괴를 나타낼 수 있다. 제안된 구성모델은 유한요소해석에 적용되었으며, 주기하중을 받는 철근 콘크리트 전단패널 및 전단벽에 대한 기존의 실험결과들과의 비교를 통해 검증되었다.

콘크리트 손상 소성모델을 이용한 FRP-콘크리트 합성보의 비선형 유한요소해석에서 여러 변수들의 영향 (Influence of Various Parameter for Nonlinear Finite Element Analysis of FRP-Concrete Composite Beam Using Concrete Damaged Plasticity Model)

  • 유승운;강가람
    • 한국산학기술학회논문지
    • /
    • 제18권2호
    • /
    • pp.697-703
    • /
    • 2017
  • 본 연구는 기존의 철근 콘크리트 구조형식을 대신할 FRP-콘크리트 합성구조의 휨거동에 관한 것이다. 구조적 성능 및 거동 특성을 수치 해석적으로 규명하고자 범용 유한요소 해석 프로그램인 ABAQUS를 사용하여 비선형 유한요소해석을 실시하였으며, 이때 사용하게 되는 여러 변수들의 영향을 실험 결과와 비교, 분석하여 본 합성구조에 최적화된 변수 값을 제시하고자 하였다. 합성구조의 구조재료모델은 콘크리트 손상소성모델(concrete damage plasticity model)을 사용하였고 콘크리트 압축응력관계식은 유로규준(Euro code)를 이용하였다. 내연적 유한요소해석의 경우 기하학적, 재료적 비선형성이 큰 경우 수렴에 많은 문제가 있으므로 본 연구의 경우 외연적 유한요소해석법이 적절한 것으로 판단된다. 콘크리트 손상 소성 모델의 여러 변수들에 대해 실험값과 비교한 결과 본 연구의 경우, 요소 크기는 20mm, 팽창각은 $30^{\circ}$, 파괴에너지 값은 $100Nm/m^2$, 변수 Kc는 0.667, 손상계수는 고려하는 것이 적절한 것으로 판단된다. 제시된 수치모델의 경우 신소재 합성보의 극한하중 및 균열패턴을 실험과 비교적 유사하게 표현할 수 있으므로 앞으로 다양한 합성구조의 수치해석에 적용 가능하리라 판단된다.