• Title/Summary/Keyword: Behavioral plasticity

Search Result 34, Processing Time 0.037 seconds

Synaptic Plasticity in Mouse Models of Autism Spectrum Disorders

  • Chung, Leeyup;Bey, Alexandra L.;Jiang, Yong-Hui
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.369-378
    • /
    • 2012
  • Analysis of synaptic plasticity together with behavioral and molecular studies have become a popular approach to model autism spectrum disorders in order to gain insight into the pathosphysiological mechanisms and to find therapeutic targets. Abnormalities of specific types of synaptic plasticity have been revealed in numerous genetically modified mice that have molecular construct validity to human autism spectrum disorders. Constrained by the feasibility of technique, the common regions analyzed in most studies are hippocampus and visual cortex. The relevance of the synaptic defects in these regions to the behavioral abnormalities of autistic like behaviors is still a subject of debate. Because the exact regions or circuits responsible for the core features of autistic behaviors in humans are still poorly understood, investigation using region-specific conditional mutant mice may help to provide the insight into the neuroanatomical basis of autism in the future.

Phytochemicals That Act on Synaptic Plasticity as Potential Prophylaxis against Stress-Induced Depressive Disorder

  • Soojung, Yoon;Hamid, Iqbal;Sun Mi, Kim;Mirim, Jin
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.148-160
    • /
    • 2023
  • Depression is a neuropsychiatric disorder associated with persistent stress and disruption of neuronal function. Persistent stress causes neuronal atrophy, including loss of synapses and reduced size of the hippocampus and prefrontal cortex. These alterations are associated with neural dysfunction, including mood disturbances, cognitive impairment, and behavioral changes. Synaptic plasticity is the fundamental function of neural networks in response to various stimuli and acts by reorganizing neuronal structure, function, and connections from the molecular to the behavioral level. In this review, we describe the alterations in synaptic plasticity as underlying pathological mechanisms for depression in animal models and humans. We further elaborate on the significance of phytochemicals as bioactive agents that can positively modulate stress-induced, aberrant synaptic activity. Bioactive agents, including flavonoids, terpenes, saponins, and lignans, have been reported to upregulate brain-derived neurotrophic factor expression and release, suppress neuronal loss, and activate the relevant signaling pathways, including TrkB, ERK, Akt, and mTOR pathways, resulting in increased spine maturation and synaptic numbers in the neuronal cells and in the brains of stressed animals. In clinical trials, phytochemical usage is regarded as safe and well-tolerated for suppressing stress-related parameters in patients with depression. Thus, intake of phytochemicals with safe and active effects on synaptic plasticity may be a strategy for preventing neuronal damage and alleviating depression in a stressful life.

Blockade of ERK Phosphorylation in the Nucleus Accumbens Inhibits the Expression of Cocaine-induced Behavioral Sensitization in Rats

  • Kim, Seung-Woo;Shin, Joong-Keun;Yoon, Hyung-Shin;Kim, Jeong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.389-395
    • /
    • 2011
  • Repeated administration of psychostimulants such as cocaine leads to the development of behavioral sensitization. Extracellular signal-Regulated Kinase (ERK), an enzyme important for long-term neuronal plasticity, has been implicated in such effects of these drugs. Although the nucleus accumbens (NAcc) is the site mediating the expression of behavioral sensitization by drugs of abuse, the precise role of ERK activation in this site has not been determined. In this study we demonstrate that blockade of ERK phosphorylation in the NAcc by a single bilateral microinjections of PD98059 (0.5 or $2.0{\mu}g/side$), or U0126 (0.1 or $1.0{\mu}g/side$), into this site dose-dependently inhibited the expression of cocaine-induced behavioral sensitization when measured at day 7 following 6 consecutive daily cocaine injections (15 mg/kg, i.p.). Acute microinjection of either vehicle or PD98059 alone produced no different locomotor activity compared to saline control. Further, microinjection of PD98059 ($2.0{\mu}g/side$) in the NAcc specifically lowered cocaine-induced increase of ERK phosphorylation levels in this site, while unaffecting p-38 protein levels. These results indicate that ERK activation in the NAcc is necessary for the expression of cocaine-induced behavioral sensitization, and further suggest that repeated cocaine evokes neuronal plasticity involving ERK pathway in this site leading to long-lasting behavioral changes.

Neuropeptide Signaling Regulates Pheromone-Mediated Gene Expression of a Chemoreceptor Gene in C. elegans

  • Park, Jisoo;Choi, Woochan;Dar, Abdul Rouf;Butcher, Rebecca A.;Kim, Kyuhyung
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.28-35
    • /
    • 2019
  • Animals need to be able to alter their developmental and behavioral programs in response to changing environmental conditions. This developmental and behavioral plasticity is mainly mediated by changes in gene expression. The knowledge of the mechanisms by which environmental signals are transduced and integrated to modulate changes in sensory gene expression is limited. Exposure to ascaroside pheromone has been reported to alter the expression of a subset of putative G protein-coupled chemosensory receptor genes in the ASI chemosensory neurons of C. elegans (Kim et al., 2009; Nolan et al., 2002; Peckol et al., 1999). Here we show that ascaroside pheromone reversibly represses expression of the str-3 chemoreceptor gene in the ASI neurons. Repression of str-3 expression can be initiated only at the L1 stage, but expression is restored upon removal of ascarosides at any developmental stage. Pheromone receptors including SRBC-64/66 and SRG-36/37 are required for str-3 repression. Moreover, pheromone-mediated str-3 repression is mediated by FLP-18 neuropeptide signaling via the NPR-1 neuropeptide receptor. These results suggest that environmental signals regulate chemosensory gene expression together with internal neuropeptide signals which, in turn, modulate behavior.

Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration

  • Kim, Sungmin;Kim, Min-Soo;Park, Kwanghoon;Kim, Hyeon-Joong;Jung, Seok-Won;Nah, Seung-Yeol;Han, Jung-Soo;Chung, ChiHye
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • Background: A number of neurological and neurodegenerative diseases share impaired cognition as a common symptom. Therefore, the development of clinically applicable therapies to enhance cognition has yielded significant interest. Previously, we have shown that activation of lysophosphatidic acid receptors (LPARs) via gintonin application potentiates synaptic transmission by the blockade of $K^+$ channels in the mature hippocampus. However, whether gintonin may exert any beneficial impact directly on cognition at the neural circuitry level and the behavioral level has not been investigated. Methods: In the current study, we took advantage of gintonin, a novel LPAR agonist, to investigate the effect of gintonin-mediated LPAR activation on cognitive performances. Hippocampus-dependent fear memory test, synaptic plasticity in the hippocampal brain slices, and quantitative analysis on synaptic plasticity-related proteins were used. Results: Daily oral administration of gintonin for 1 wk significantly improved fear memory retention in the contextual fear-conditioning test in mice.We also found that oral administration of gintonin for 1 wk increased the expression of learning and memory-related proteins such as phosphorylated cyclic adenosine monophosphate-response element binding (CREB) protein and brain-derived neurotrophic factor (BDNF). In addition, prolonged gintonin administration enhanced long-term potentiation in the hippocampus. Conclusion: Our observations suggest that the systemic gintonin administration could successfully improve contextual memory formation at the molecular and synaptic levels as well as the behavioral level. Therefore, oral administration of gintonin may serve as an effective noninvasive, nonsurgical method of enhancing cognitive functions.

The Effects of Complex Motor Training on Motor Function and Synaptic Plasticity After Neonatal Binge-like Alcohol Exposure in Rats (복합운동훈련이 신생 흰쥐의 알코올성 소뇌손상 후 운동기능 및 신경연접가소성에 미치는 영향)

  • Lee, Sun-Min;Koo, Hyun-Mo;Kwon, Hyuk-Cheol
    • Physical Therapy Korea
    • /
    • v.12 no.3
    • /
    • pp.56-66
    • /
    • 2005
  • The purposes of this study were to test that complex motor training enhance motor function significantly, to test change in cerebellum, and to test the synaptic plasticity into the immunohistochemistry response of synaptophysin. Using an animal model of fetal alcohol syndrome - which equates peak blood alcohol concentrations across developmental period - the effects of alcohol on body weight during periods were examined. The effect of complex motor training on motor function and synaptic plasticity of rat exposed alcohol on postnatal days 4 through 10 were studied. Newborn rats were assigned to one of two groups: (1) normal group (NG), via artificial rearing to milk formula and (2) alcohol groups (AG), via 4.5 g/kg/day of ethanol in a milk solution. After completion of the treatments, the pups were fostered back to lactating dams, where they were raised in standard cages (two-and three animals per cage) until they were postnatal 48 days. Rats from alcohol group of postnatal treatment then spent 10 days in one of two groups: Alcohol-experimental group was had got complex motor training (learning traverse a set of 6 elevated obstacles) for 4 weeks. The alcohol-control group was not trained. Before consider replacing with "the experiment/study", (avoid using "got" in writing) the rats were examined during four behavioral tests and their body weights were measured, then their coronal sections were processed in rabbit polyclonal antibody synaptophysin. The synaptophysin expression in the cerebellar cortex was investigated using a light microscope. The results of this study were as follows: 1. The alcohol groups contained significantly higher alcohol concentrations than the normal group. 2. The alcohol groups had significantly lower body weights than the normal group. 3. In alcohol groups performed significantly lower than the normal group on the motor behavioral test. 4. In alcohol-control group showed significantly decreased immunohistochemistric response of the synaptophysin in the cerebellar cortex compared to the nomal group. These results suggest that improved motor function induced by complex motor training after postnatal exposure is associated with dynamically altered expression of synaptophysin in cerebellar cortex and that is related with synaptic plasticity. Also, these data can potentially serve as a model for therapeutic intervention.

  • PDF

Role of Carbon Monoxide in Neurovascular Repair Processing

  • Choi, Yoon Kyung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.93-100
    • /
    • 2018
  • Carbon monoxide (CO) is a gaseous molecule produced from heme by heme oxygenase (HO). Endogenous CO production occurring at low concentrations is thought to have several useful biological roles. In mammals, especially humans, a proper neurovascular unit comprising endothelial cells, pericytes, astrocytes, microglia, and neurons is essential for the homeostasis and survival of the central nervous system (CNS). In addition, the regeneration of neurovascular systems from neural stem cells and endothelial precursor cells after CNS diseases is responsible for functional repair. This review focused on the possible role of CO/HO in the neurovascular unit in terms of neurogenesis, angiogenesis, and synaptic plasticity, ultimately leading to behavioral changes in CNS diseases. CO/HO may also enhance cellular networks among endothelial cells, pericytes, astrocytes, and neural stem cells. This review highlights the therapeutic effects of CO/HO on CNS diseases involved in neurogenesis, synaptic plasticity, and angiogenesis. Moreover, the cellular mechanisms and interactions by which CO/HO are exploited for disease prevention and their therapeutic applications in traumatic brain injury, Alzheimer's disease, and stroke are also discussed.

Nano-Resolution Connectomics Using Large-Volume Electron Microscopy

  • Kim, Gyu Hyun;Gim, Ja Won;Lee, Kea Joo
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.171-175
    • /
    • 2016
  • A distinctive neuronal network in the brain is believed to make us unique individuals. Electron microscopy is a valuable tool for examining ultrastructural characteristics of neurons, synapses, and subcellular organelles. A recent technological breakthrough in volume electron microscopy allows large-scale circuit reconstruction of the nervous system with unprecedented detail. Serial-section electron microscopy-previously the domain of specialists-became automated with the advent of innovative systems such as the focused ion beam and serial block-face scanning electron microscopes and the automated tape-collecting ultramicrotome. Further advances in microscopic design and instrumentation are also available, which allow the reconstruction of unprecedentedly large volumes of brain tissue at high speed. The recent introduction of correlative light and electron microscopy will help to identify specific neural circuits associated with behavioral characteristics and revolutionize our understanding of how the brain works.

Plasticity of Mating Calls in Hyla Japonica (Amphibia: Hylidae)

  • Kyu-Bom Park;Jae Chun Choe
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.463-469
    • /
    • 1998
  • Hyla japonica males were observed to produce two distinctively different types of mating calls: advertisement call to attract conspecific females and encounter call to keep off potential competitor males. Whereas advertisement calls were organized in bouts of calls or notes, encounter calls were usually produced as separate calls. Encounter calls were much longer and had more pulses per call than advertisement calls. However dominant frequencies or pitches of the two calls did not differ significantly. Hyla Japonica males exhibited considerable plasticity in their calling behavior. They altered both qualitative and quantitative properties of their calls in response to other calling males. Sometimes, they even switched from producing advertisement calls to encounter calls. Advertisement calls produced by chorusing males were shorter in duration and thus move calls per bout than those produced by lone males. Males also produced much lower-pitched calls when calling together with other males. Considering that low pitch calls are often Highly correlated with body size, it is possible that H. japonica males may try to generate deceptive calls to indicate the size greater than the actual.

  • PDF