• 제목/요약/키워드: Behavior-response performance

검색결과 691건 처리시간 0.032초

Seismic response analysis of mega-scale buckling-restrained bracing systems in tall buildings

  • Gholipour, Mohammadreza;Mazloom, Moosa
    • Advances in Computational Design
    • /
    • 제3권1호
    • /
    • pp.17-34
    • /
    • 2018
  • Tall buildings are categorized as important structures because of the large number of occupants and high construction costs. The choice of competent lateral load resisting systems in tall buildings is of crucial importance. Bracing systems have long been an economic and effective method for resisting lateral loads in steel structures. However, there are some potential adverse aspects to bracing systems such as the limitations they inflict on architectural plans, uplift forces and poor performances in compression. in order to eliminate the mentioned problems and for cost optimization, in this paper, six 20-story steel buildings and frames with different types of bracing, i.e., conventional, mega-scale and buckling-restrained bracing (BRB) were analyzed. Linear and modal push-over analyses were carried out. The results pointed out that Mega-Scale Bracing (MSB) system has significant superiority over the conventional bracing type. The MSB system is 25% more economic. Some other advantages of MSB include: up to 63% less drift ratio, up to 38% better performance in lateral displacement, up to 100% stiffer stories, and about 50% smaller uplift forces. Moreover, MSB equipped with BRB attests even a better seismic behavior in the aforementioned parameters.

Investigations on a vertical isolation system with quasi-zero stiffness property

  • Zhou, Ying;Chen, Peng
    • Smart Structures and Systems
    • /
    • 제25권5호
    • /
    • pp.543-557
    • /
    • 2020
  • This paper presents a series of experimental and numerical investigations on a vertical isolation system with quasi-zero stiffness (QZS) property. The isolation system comprises a linear helical spring and disk spring. The disk spring is designed to provide variable stiffness to the system. Orthogonal static tests with different design parameters are conducted to verify the mathematical and mechanical models of the isolation system. The deviations between theoretical and test results influenced by the design parameters are summarized. Then, the dynamic tests for the systems with different under-load degrees are performed, including the fast sweeping tests, harmonic excitation tests, and half-sine impact tests. The displacement transmissibility, vibration reduction rate, and free vibration response are calculated. Based on the test results, the variation of the transmission rule is evaluated and the damping magnitudes and types are identified. In addition, the relevant numerical time history responses are calculated considering the nonlinear behavior of the system. The results indicate that the QZS isolation system has a satisfactory isolation effect, while a higher damping level can potentially promote the isolation performance in the low-frequency range. It is also proved that the numerical calculation method accurately predicts the transmission character of the isolation system.

연속 지진에 의하여 손상된 필로티 RC 건축물의 BRB 보강 전/후의 취약성 평가 (Fragility Assessment of Damaged Piloti-Type RC Building With/Without BRB Under Successive Earthquakes)

  • 신지욱;김준희;이기학
    • 한국지진공학회논문집
    • /
    • 제17권3호
    • /
    • pp.133-141
    • /
    • 2013
  • This paper presents the seismic evaluation and prediction of a damaged piloti-type Reinforced Concrete (RC) building before and after post-retrofitting under successive earthquakes. For considering realistic successive earthquakes, the past records measured at the same station were combined. In this study, the damaged RC building due to the first earthquake was retrofitted with a buckling-restrained brace (BRB) before the second earthquake occurred. Nonlinear Time History Analysis (NTHA) was performed under the scaled intensity of the successive ground motions. Based on the extensive structural response data obtained form from the NTHA, the fragility relationships between the ground shaking intensity and the probability of reaching a pre-determined limit state was were derived. In addition, The the fragility curves of the pre-damaged building without and with the BRBs were employed to evaluate the effect of the successive earthquakes and the post-retrofit effect. Through the seismic assessment subjected to the successive records, it was observed that the seismic performance of the pre-damaged building was significantly affected by the severity of the damage from the first earthquake damages and the hysteresis behavior of the retrofit element.

Dynamic behavior of smart material embedded wind turbine blade under actuated condition

  • Mani, Yuvaraja;Veeraragu, Jagadeesh;Sangameshwar, S.;Rangaswamy, Rudramoorthy
    • Wind and Structures
    • /
    • 제30권2호
    • /
    • pp.211-217
    • /
    • 2020
  • Vibrations of a wind turbine blade have a negative impact on its performance and result in failure of the blade, therefore an approach to effectively control vibration in turbine blades are sought by wind industry. The small domestic horizontal axis wind turbine blades induce flap wise (out-of-plane) vibration, due to varying wind speeds. These flap wise vibrations are transferred to the structure, which even causes catastrophic failure of the system. Shape memory alloys which possess physical property of variable stiffness across different phases are embedded into the composite blades for active vibration control. Previously Shape memory alloys have been used as actuators to change their angles and orientations in fighter jet blades but not used for active vibration control for wind turbine blades. In this work a GFRP blade embedded with Shape Memory Alloy (SMA) and tested for its vibrational and material damping characteristics, under martensitic and austenite conditions. The embedment portrays 47% reduction in displacement of blade, with respect to the conventional blade. An analytical model for the actuated smart blade is also proposed, which validates the harmonic response of the smart blade.

웨어러블 텍스타일 스트레인 센서 리뷰 (Wearable Textile Strain Sensors)

  • 노정심
    • 한국의류산업학회지
    • /
    • 제18권6호
    • /
    • pp.733-745
    • /
    • 2016
  • This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain sensing according to sensor structures were understood; furthermore, the factors that affect the sensing performance were critically reviewed and application studies were examined. Textile strain sensors should be able to show piezoresistive effects with consistent resistance-extension in response to the extensional deformations that are repeated when they are worn. Textile strain sensors with piezoresistivity are typically made using conductive yarn knit structures or carbon-based fillers or conducting polymer filler composite materials. For the accuracy and reliability of textile strain sensors, fabrication technologies that would minimize deformation hysteresis should be developed and processes to complement and analyze sensing results based on accurate understanding of the sensors' resistance-strain behavior are necessary. Since light-weighted, flexible, and highly elastic textile strain sensors can be worn by users without any inconvenience so that to enable the users to continuously collect data related to body movements, textile strain sensors are expected to become the core of human interface technologies with a wide range of applications in diverse areas.

퍼지 제어를 이용한 ATM망에서 PM에 관한 연구 (A Study on Policing Mechanism in ATM Network using Fuzzy Control)

  • 신관철;박세준;양태규
    • 한국정보통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.931-940
    • /
    • 2001
  • 본 논문에서는 ATM 네트워크에서 예측할 수 없고 폭주가 가능한 입력의 트래픽 제어를 위한 Fuzzy Policing Mechanism(FPM)을 제안한다. FPM은 카운터, 감산기와 퍼지논리제어기(FLC)로 구성된다 FLC는 퍼지화기, 추론 엔진, 비퍼지화기로 구성된다. FLC의 출력은 감산기에 입력되어 카운터상태를 일정하게 조절하며 카운터는 셀의 전송을 제어하게 된다. 시뮬레이션에서는 Fluid Flow 방법에 의한 Leaky Bucket algorithm(LBM)과 FPM의 셀 손실 확률과 특성성능을 비교하였다. 시뮬레이션 결과, FPM은 LBM보다 작은 셀 손실 확률을 얻었으며 가변적인 트래픽 자원을 효율적으로 제어했다. 그리고 특성성능에서 FPM이 좋은 응답 특성 및 선택도를 보였다.

  • PDF

Design of Capacitive Power Transfer Using a Class-E Resonant Inverter

  • Yusop, Yusmarnita;Saat, Shakir;Nguang, Sing Kiong;Husin, Huzaimah;Ghani, Zamre
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1678-1688
    • /
    • 2016
  • This paper presents a capacitive power transfer (CPT) system using a Class-E resonant inverter. A Class-E resonant inverter is chosen because of its ability to perform DC-to-AC inversion efficiently while significantly reducing switching losses. The proposed CPT system consists of an efficient Class-E resonant inverter and capacitive coupling formed by two flat rectangular transmitter and receiver plates. To understand CPT behavior, we study the effects of various coupling distances on output power performance. The proposed design is verified through lab experiments with a nominal operating frequency of 1 MHz and 0.25 mm coupling gap. An efficiency of 96.3% is achieved. A simple frequency tracking unit is also proposed to tune the operating frequency in response to changes in the coupling gap. With this resonant frequency tracking unit, the efficiency of the proposed CPT system can be maintained within 96.3%-91% for the coupling gap range of 0.25-2 mm.

복합열화분석용 3차원 거동대응성 시험방법 및 결과분석 (A Study on the Analysis of 3 Dimensional Substrate Behaviour of Complex Environmental Deterioration and the Analysis of Results)

  • 송제영;오규환;최은규;이정훈;김병일;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.77-78
    • /
    • 2017
  • Although many waterproofing materials and techniques have been developed and applied, there is still a leakage in concrete structures. The main reason for the failure of waterproofing is due to the lack of consideration of the environmental conditions and the inconsistent performance requirement of the waterproofing materials in response to the complexity of the environmental conditions., and materials that are unsuitable to the environment are still being selected for usage due to their low price. Moreover, there is no valid test assessment for waterproofing materials to be used prior to actual application in the construction site. The development of a testing method and apparatus that can evaluate the composite waterproofing method is proposed in this paper and an interpretation method that can analyze the results of the evaluation.

  • PDF

La(III) Selective Membrane Sensor Based on a New N-N Schiff's Base

  • Ganjali, Mohammad Reza;Matloobi, Parisa;Ghorbani, Maryam;Norouzi, Parviz;Salavati-Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권1호
    • /
    • pp.38-42
    • /
    • 2005
  • Bis(2-methylbenzaldehyde)butane-2,3-dihydrazone(TDSB) was used as new N-N Schiff's base which plays the role of an excellent ion carrier in the construction of a La(III) membrane sensor. The best performance was obtained with a membrane containing, 30% poly(vinyl chloride), 60% benzyl acetate, 6% TDSB and 4% sodium tetraphenyl borate. This sensor reveals a very good selectivity towards La(III) ions over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The proposed electrode exhibits a Nernstian behavior (with slope of 19.8 mV per decade) over a wide concentration range (1.0 ${\times}$ 10$^{-5}$-1.0 ${\times}$ 10$^{-1}$ M). The detection limit of the sensor is 7.0 ${\times}$ 10$^{-6}$ M. It has a very short response time, in the whole concentration range ($\sim$5 s), and can be used for at least twelve weeks in the pH range of 3.0-9.4. The proposed sensor was successfully applied as an indicator electrode for the potentiometric titration of a La(III) solution, with EDTA. It was also successfully applied in the determination of fluoride ions in three mouth wash preparations.

Mechanistic Analysis of Geogrid Base Reinforcement in Flexible Pavements Considering Unbound Aggregate Quality

  • Kwon Jay-Hyun;Tutumluer Erol;Kim Min-Kwan
    • 한국도로학회논문집
    • /
    • 제8권2호
    • /
    • pp.37-47
    • /
    • 2006
  • The structural response and performance of a flexible pavement can be improved through the use of geogrids as base course reinforcement. Current ongoing research at the University of illinois has focused on the development of a geogrid base reinforcement mechanistic model for the analysis of reinforced pavements. This model is based on the finite element methodology and considers not only the nonlinear stress-dependent pavement foundation but also the isotropic and anisotropic behavior of base/subbase aggregates for predicting pavement critical responses. An axisymmetric finite element model was developed to employ a three-noded axisymmetric membrane element for modeling geogrid reinforcement. The soil/aggregate-geogrid interface was modeled by the three-noded membrane element and the neighboring six-noded no thickness interface elements. To validate the developed mechanistic model, the commercial finite element program $ABAQUS^{TM}$ was used to generate pavement responses as analysis results for simple cases with similar linear elastic material input properties. More sophisticated cases were then analyzed using the mechanistic model considering the nonlinear and anisotropic modulus property inputs in the base/subbase granular layers. This paper will describe the details of the developed mechanistic model and the effectiveness of geogrid reinforcement when used in different quality unbound aggregate base/subbase layers.

  • PDF