• Title/Summary/Keyword: Behavior-based system

Search Result 3,408, Processing Time 0.034 seconds

POMDP-based Human-Robot Interaction Behavior Model (POMDP 기반 사용자-로봇 인터랙션 행동 모델)

  • Kim, Jong-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.599-605
    • /
    • 2014
  • This paper presents the interactive behavior modeling method based on POMDP (Partially Observable Markov Decision Process) for HRI (Human-Robot Interaction). HRI seems similar to conversational interaction in point of interaction between human and a robot. The POMDP has been popularly used in conversational interaction system. The POMDP can efficiently handle uncertainty of observable variables in conversational interaction system. In this paper, the input variables of the proposed conversational HRI system in POMDP are the input information of sensors and the log of used service. The output variables of system are the name of robot behaviors. The robot behavior presents the motion occurred from LED, LCD, Motor, sound. The suggested conversational POMDP-based HRI system was applied to an emotional robot KIBOT. In the result of human-KIBOT interaction, this system shows the flexible robot behavior in real world.

A Log Analysis System with REST Web Services for Desktop Grids and its Application to Resource Group-based Task Scheduling

  • Gil, Joon-Min;Kim, Mi-Hye
    • Journal of Information Processing Systems
    • /
    • v.7 no.4
    • /
    • pp.707-716
    • /
    • 2011
  • It is important that desktop grids should be able to aggressively deal with the dynamic properties that arise from the volatility and heterogeneity of resources. Therefore, it is required that task scheduling be able to positively consider the execution behavior that is characterized by an individual resource. In this paper, we implement a log analysis system with REST web services, which can analyze the execution behavior by utilizing the actual log data of desktop grid systems. To verify the log analysis system, we conducted simulations and showed that the resource group-based task scheduling, based on the analysis of the execution behavior, offers a faster turnaround time than the existing one even if few resources are used.

Effects of Counterpart Materials on Wear Behavior of Thermally Sprayed Ni-based Self-flux Alloy Coatings (니켈기 자융성 합금 코팅층의 마모거동에 미치는 상대마모재의 영향)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.92-97
    • /
    • 2007
  • This study aims at investigating the wear behavior of thermally sprayed Ni-based self-flux alloy coatings against different counterparts. Ni-based self-flux alloy powders were flame-sprayed onto a carbon steel substrate and then heat-treated at temperature of $1000^{\circ}C$. Dry sliding wear tests were performed using the sliding speeds of 0.2 and 0.8 m/s and the applied loads of 5 and 20 N. AISI 52100, $Al_2O_3$, $Si_3N_4$ and $ZrO_2$ balls were used as counterpart materials. Wear behavior of Ni-based self-flux alloy coatings against different counterparts were studied using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that wear behavior of Ni-based self-flux alloy coatings were much influenced by counterpart materials.

  • PDF

Artificial immune network-based cooperative beharior strategies in collective autonomous mobile rotos (인공면역계 기반의 자율이동로봇군의 협조행동전략 결정)

  • 이동욱;심귀보
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.102-109
    • /
    • 1998
  • In this paper, we propose a method of cooperative control based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment.For the purpose of applying immune system to DARS, a robot is regarded as a B lymphocyte(B cell), each environmental condition as an antigen, and a behavior strategy as an antibody respectively. The executing process of proposed method is as follows. When the environmental codintion changes, a robot select an appropriate beharior stategy. And its behavior stategy is stimulated and suppressed by other robot using communiation. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and idotopic network hypothesis. And it is used for decision making of optimal swarm stragegy.

  • PDF

Emotional Behavior Decision Model Based on Linear Dynamic System for Intelligent Service Robots (지능형 서비스 로봇을 위한 선형 동적 시스템 기반의 감정 기반 행동 결정 모델)

  • Ahn, Ho-Seok;Choi, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.760-768
    • /
    • 2007
  • This paper introduces an emotional behavior decision model based on linear system for intelligent service robots. An emotional model should make different behavior decisions according to the purpose of the robots. We propose an emotional behavior decision model which can change the character of intelligent service robots and make different behavior decisions although the situation and environment remain the same. We defined each emotional element such as reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics by state dynamic equations. The proposed system model is a linear dynamic system. If you want to add one external stimulus or behavior, you need to add just one dimensional vector to the matrix of external stimulus or behavior dynamics. The case of removing is same. The change of reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics also follows the same procedure. We implemented a cyber robot and an emotional head robot using 3D character for verifying the performance of the proposed emotional behavior decision model.

DTSTM: Dynamic Tree Style Trust Measurement Model for Cloud Computing

  • Zhou, Zhen-Ji;Wu, Li-Fa;Hong, Zheng;Xu, Ming-Fei;Pan, Fan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.305-325
    • /
    • 2014
  • In cloud computing infrastructure, current virtual machine trust measurement methods have many shortcomings in dynamism, security and concurrency. In this paper, we present a new method to measure the trust of virtual machine. Firstly, we propose "behavior trace" to describe the state of virtual machine. Behavior trace is a sequence of behaviors. The measurement of behavior trace is conducted on the basis of anticipated trusted behavior, which not only ensures security of the virtual machine during runtime stage but also reduces complexity of the trust measurement. Based on the behavior trace, we present a Dynamic Tree Style Trust Measurement Model (DTSTM). In this model, the measurement of system domain and user domain is separated, which enhances the extensibility, security and concurrency of the measurement. Finally, based on System Call Interceptor (SCI) and Virtual Machine Introspection (VMI) technology, we implement a DTSTM prototype system for virtual machine trust measurement. Experimental results demonstrate that the system can effectively verify the trust of virtual machine and requires a relatively low performance overhead.

Andro-profiler: Anti-malware system based on behavior profiling of mobile malware (행위기반의 프로파일링 기법을 활용한 모바일 악성코드 분류 기법)

  • Yun, Jae-Sung;Jang, Jae-Wook;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.145-154
    • /
    • 2014
  • In this paper, we propose a novel anti-malware system based on behavior profiling, called Andro-profiler. Andro-profiler consists of mobile devices and a remote server, and is implemented in Droidbox. Our aim is to detect and classify malware using an automatic classifier based on behavior profiling. First, we propose the representative behavior profiling for each malware family represented by system calls coupled with Droidbox system logs. This is done by executing the malicious application on an emulator and extracting integrated system logs. By comparing the behavior profiling of malicious applications with representative behavior profiling for each malware family, we can detect and classify them into malware families. Andro-profiler shows over 99% of classification accuracy in classifying malware families.

A Machine Learning Approach to Detect the Dog's Behavior using Wearable Sensors

  • Aich, Satyabrata;Chakraborty, Sabyasachi;Joo, Moon-il;Sim, Jong Seong;Kim, Hee-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.281-282
    • /
    • 2019
  • In recent years welfare of animals is the biggest challenge because animals, especially dogs are widely recognized as pet as well as they are using as service animals. So, for the wellbeing of the dog it is necessary to perform objective assessment to track their behavior in everyday life. In this paper, we have proposed an automatic behavior assessment system for dogs based on a neck worn and tail worn accelerometer and gyroscope platform, and data analysis techniques that recognize typical dog activities. We evaluate the system based on the analysis of 8 behavior traits in 3 dogs, incorporating 2 breeds of various sizes. Our proposed framework able to reproduce the manual assessment that is based on the video recording which is treated as gold standard that exhibits the real-life use case of automated dog behavior analysis.

  • PDF

Cooperative behavior and control of autonomous mobile robots using genetic programming (유전 프로그래밍에 의한 자율이동로봇군의 협조행동 및 제어)

  • 이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1177-1180
    • /
    • 1996
  • In this paper, we propose an algorithm that realizes cooperative behavior by construction of autonomous mobile robot system. Each robot is able to sense other robots and obstacles, and it has the rule of behavior to achieve the goal of the system. In this paper, to improve performance of the whole system, we use Genetic Programming based on Natural Selection. Genetic Programming's chromosome is a program of tree structure and it's major operators are crossover and mutation. We verify the effectiveness of the proposed scheme from the several examples.

  • PDF

Swarm Control of Distributed Autonomous Robot System based on Artificial Immune System using PSO (PSO를 이용한 인공면역계 기반 자율분산로봇시스템의 군 제어)

  • Kim, Jun-Yeup;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.465-470
    • /
    • 2012
  • This paper proposes a distributed autonomous control method of swarm robot behavior strategy based on artificial immune system and an optimization strategy for artificial immune system. The behavior strategies of swarm robot in the system are depend on the task distribution in environment and we have to consider the dynamics of the system environment. In this paper, the behavior strategies divided into dispersion and aggregation. For applying to artificial immune system, an individual of swarm is regarded as a B-cell, each task distribution in environment as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. The executing process of proposed method is as follows: When the environmental condition changes, the agent selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other agent using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. In order to decide more accurately select the behavior strategy, the optimized parameter learning procedure that is represented by stimulus function of antigen to antibody in artificial immune system is required. In this paper, particle swarm optimization algorithm is applied to this learning procedure. The proposed method shows more adaptive and robustness results than the existing system at the viewpoint that the swarm robots learning and adaptation degree associated with the changing of tasks.