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Abstract 
 

In cloud computing infrastructure, current virtual machine trust measurement methods have 

many shortcomings in dynamism, security and concurrency. In this paper, we present a new 

method to measure the trust of virtual machine. Firstly, we propose “behavior trace” to 

describe the state of virtual machine. Behavior trace is a sequence of behaviors. The 

measurement of behavior trace is conducted on the basis of anticipated trusted behavior, which 

not only ensures security of the virtual machine during runtime stage but also reduces 

complexity of the trust measurement. Based on the behavior trace, we present a Dynamic Tree 

Style Trust Measurement Model (DTSTM). In this model, the measurement of system domain 

and user domain is separated, which enhances the extensibility, security and concurrency of 

the measurement. Finally, based on System Call Interceptor (SCI) and Virtual Machine 

Introspection (VMI) technology, we implement a DTSTM prototype system for virtual 

machine trust measurement. Experimental results demonstrate that the system can effectively 

verify the trust of virtual machine and requires a relatively low performance overhead. 
 

 

Keywords: trust measurement, trusted computing, cloud computing, virtual machine, 

behavior trace 
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1. Introduction 

Virtualization technologies have been widely applied in cloud computing to package 

computing, network and storage resources which are provided to tenants. It is curcial to 

measure whether the cloud computing platform runs buggy, malicous application codes or is 

improperly configured. Thus, how to build a trustworthy virtual environment has become a 

key challenge to ensure the security of cloud computing platform [1] and it has attracted wide 

attention of researchers. 

Traditional security management methods for virtual environment usually depend on 

software level security and lack a trustable base [2]. It is hard to achieve a trusted virtual 

machine with traditional manner in cloud computing environment. Regarding this problem, an 

effective solution
 
[3] is to combine trusted computing with cloud computing and provide 

trusted cloud service in a verifiable manner. Santos
 
[4] initially proposed trusted cloud 

computing and designed a Trusted Cloud Computing Platform (TCCP). The platform starts 

from a trusted platform module which built in hardware of cloud platform, and conducts trust 

measurement level by level. In this way, a trusted virtual environment with ensured security is 

finally built up. Similar studies were provided by researchers in [5][6][7][8][9]. These studies 

are based on the Trust Measurement Scheme by TCG [10], which is used to ensure 

trustworthiness of traditional PC platform at booting stage. They do not accommodate a 

dynamic and multi-tenant virtual environment such as cloud computing. The major defects of 

these solutions are listed as follows: 

 Static measurement. In cloud computing, virtual machines are usually used on 

demand. The programs running in user domains may change trustworthiness of the 

whole virtual machine. Current methods which use static measurement can only 

ensure trustworthiness of Virtual Machine Monitor (VMM) during booting stage [11] 

[12]. A method that can accurately describe the state of running virtual machine is 

needed. 

 Weak concurrency. A VMM often monitors a system domain and a large number of 

user domains. Chain style measurement model can hardly deliver real-time and 

accurate trustworthiness to user domains with complicated structures [11]. Moreover, 

some user domains may constitute a trust domain according to specific security policy 

based on business demands [13][14], which results in a more complicated relationship 

of trust. As a result, an automatic and centralized trust measurement mechanism for 

virtual machine is required. 

 Poor security. Traditional trust measurement methods such as IMA
 
[15]  can not resist 

the attack in kernel mode. For example, IMA depends on kernel to ensure the 

correctness of verification results when adopting Linux Security Model mechanism to 

implement integrity verification. Thus, measurement of virtual machine trust in cloud 

computing infrastructure requires the ability of kernel attack resistance. 

Regarding the above problems, we present Dynamic Tree Style Trust Measurement Model 

(DTSTM) for cloud computing. The model measures behavior trace instead of virtual machine 

state which is difficult to describe, and reduces complexity of virtual machine trust 

measurement while ensuring its security at runtime stage. Behavior trace is a sequence of 

behaviors, we formally define it in section 2. In order to solve security and concurrency 

problems, our model measures system domain and user domain on the basis of configuration 
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and behavior trace. Moreover, DTSTM ensures security of the measurement module itself by 

separating measurement module from monitored virtual machine through the application of 

SCI and VMI technology. We leverage real-time monitoring of kernel, key data, configuration 

and application behavior of user domain to offer dynamic trust measurement of virtual 

machine. 

The remainder of this paper is organized as follows: In Section 2, we formally describe a 

trust measurement theorem of virtual machine state based on the concept of behavior trace, 

which builds the theoretical founation of our work. In Section 3, we introduce the structure and 

workflow of DTSTM and analyze security of this model. Section 4 presents a DTSTM-based 

trust measurement system and evaluates effectiveness and performance of our implementation. 

In section 5, we discuss related work. Section 6 draws conclution and summarizes future work. 

2. Virtual Machine Trust Validation 

In this section, we firstly propose the concept of behavior trace, and then describe virtual 

machine state on the basis of behavior trace. Thereafter, a measurement method of virtual 

machine behavior in cloud computing infrastructure is provided. Finally, two virtual machine 

trust measurement methods are inferred from the virtual machine trust validation theorem. 

2.1 Description 

According to the definition of TCG, trustworthiness of a computing platform state depends on 

whether the platform’s behavior complies with its anticipated policy [10], therefore the state of 

a virtual machine is affected by its behavior. In virtual machine trust measurement, any virtual 

machine behavior that does not conform to anticipated policy will damage trustworthiness of 

the virtual machine. Thus, virtual machine trust validation can be realized through 

measurement of the virtual machine behavior. For the purpose of description, we give relevant 

definitions as follows.  

DEFINITION 1 (Behavior trace) Behavior trace R=b1b2…bn, where b1, b2, …, bn 

represents virtual machine behavior. Behavior bB=(SOA) means an operation initiated by 

a subject and performed on an object. S={s1, s2, …, sn} is a set of behavior subjects including 

the programs started by the user, O={o1, o2, …, on} is a set of behavior objects. A single object 

oO can be a resource such as a document, a program and an equipment, A={r, w, e} is a set of 

access operations such as read, write and execute. 

DEFINITION 2 (Trusted behavior) A specific behavior b of virtual machine is trusted 

means behavior b complies with the anticipated policy of trusted behavior from the inquiry 

party. 

DEFINITION 3 (Virtual machine state) Virtual Machine State Set N=(REHFJ) 

indicates a collection of active subject behaviors and behavior attributes in a certain state. In 

the expression, nN indicates a single state within Virtual Machine State Set, and active 

subjects in State n are denoted as Sn. R indicates behavior trace, and behavior trace of State n is 

denoted as Rn. E={e1, e2, …, en} indicates a set of expected values of system integrity 

measurement, and a set of expected values for trust in State n is denoted as En. H(s) is a 

function that measures integrity of Active Subject s. F is a function that checks policy 

conformance of the subject behavior. If Behavior b conforms to security policy, F(b)=True; 

otherwise, F(b)=False. For example, a policy p contains two rules r1 and r2. r1 is user a1 can 

read file f1. r2 is user a2 can’t read file f1. If a1 reads file f1, F determine the behavior complies 

with p. If a2 reads file f1, F determine the behavior does not comply with p. J is a function to 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014                                           308 

Copyright ⓒ 2014 KSII 

determine whether a state is trustable. If State n is trustable, J(n)=Trust; otherwise, 

J(n)=Untrust. 

2.2 Measurement 

Virtual machine platform is composed of various hardwares and softwares with certain 

functional attributes, which are called components. Thus, to measure virtual machine behavior 

means acquiring relevant attributes of component behavior. There are two types of 

components in virtual machine: system component and application component. The former 

provides basic system service for user components while the latter mainly implements various 

tasks issued by the user. For different features of these two types, the strategies and methods to 

measure their behaviors are also different. 

1) System component. System component is mainly composed of kernel module, system 

dynamic link library and relevant configuration files. When a virtual machine starts, system 

kernel will be loaded first. At this moment, virtual machine state can be regarded as the initial 

state for absence of user during booting stage. Meanwhile, booting sequence of system kernel, 

code module and input/output is relatively fixed. Thus, trustworthiness of the state can be 

determined by integrity. There is a set of Platform Configuration Registers (PCR) within TPM, 

and each PCR is associated with a specific event state of a certain system during booting stage. 

When an event occurs, hash values corresponding to the virtual machine program will be 

calculated and expanded to PCR. After the booting stage, hash values will be used to verify 

integrity of the system component. 

2) Application component. Application component consists of executable program, 

application dynamic link library and relevant configuration files. Since component has diverse 

inputs and often executes in a concurrent mode, the composition of operating environment is 

complicated. Applications implement user task through a series of behaviors which may affect 

trustworthiness of the system. Therefore, trustworthiness of a behavior lies not only on the 

integrity of file component itself but also input data and environment. To determine whether a 

component will cause detrimental effect to system means verifying whether the component 

can cause damage to virtual machines. In order to determine whether application environment 

of virtual machine is trustable, it is required to verify the sensitive behaviors of all application 

components in runtime stage. 

However, each component may produce sensitive behaviors that would affect the system. 

For example, both a trusted component and a malicious one may read and modify sensitive 

resources of the system. Thus, it is not reasonable to determine whether a component is 

trustable only on the basis of existence or absence of sensitive behaviors. If the behavior trace 

of component can be analyzed in a meticulous way and a comprehensive description of 

behavior trace is provided, it is possible to objectively discover whether a component produces 

malicious behavior. To precisely measure the state of current virtual machine, a prerequisite is 

to acquire behavior trace of the components. 

2.3 Validation 

Based on system component and application component behavior, following validation policy 

is defined to determine whether a virtual machine is trustable. 

DEFINITION 4 (Trust validation policy of virtual machine state) In a certain state, if 

all active subjects in the virtual machine are trusted subjects and the behavior traces of all 

subjects comply with the security policy, the virtual machine state is trustable, namely: 

∀s((sSn)(H(s)En))b((bRn)(F(b)=True))J(n)=Trust 
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The definition indicates that trusted behavior of a trusted subject ensures a trusted virtual 

machine state. Any untrusted subject or behavior would result in untrusted virtual machine 

state. To ensure effective implementation of measurement, report and determination 

mechanism of behavior, all active subjects of trusted virtual machine state must be trusted 

subjects. Therefore, trusted system behavior will not affect trustworthiness of the virtual 

machine state. 

As previously mentioned, the virtual machine state is affected by system behavior. 

Transfer function Q(b, ri)=ri+1 indicates that occurrence of system behavior b renders it 

possible for virtual machine state to transfer from ri to ri+1. More generally, if R represents a 

system behavior trace, Q(R, ri)=ri+1 indicates that occurrence of system behavior trace R 

renders it possible for virtual machine state to transfer from ri to ri+1. The theorem below can be 

inferred from Definition 4. 

THEOREM (Trust validation theorem of virtual machine state) If virtual machine 

state rt is trustable at the moment t and each system behavior bi (1in) within system behavior 

trace of virtual machine (R=b1b2…bn) is trustable after moment t, the virtual machine state 

rt+1=Q(R, rt) after the occurrence of system behavior trace R is trustable. 

Since state space of virtual machine is usually infinite, it is difficult to directly determine 

whether a state is trustable or not. The trust validation theorem only needs to confirm whether 

the virtual machine state at a certain moment and each system behavior after that moment are 

trustable. This measurement method is more feasibile in a real system and trust validation can 

be effectively performed for any system state. 

DEFINITION 5 Assuming B
T 

indicates a set of system behaviors related to the 

trustworthiness of a virtual machine, R1 and R2 are two system behavior traces. R2  is a trust 

relevant behavior trace of R1 if the following conditions are simultaneously satisfied. 

─ For any system behavior a in R1, if aB
T
, a also belongs to R2; 

─ For any system behavior b in R1, if bB
T
, b does not belong to R2; 

─ The sequence of system behaviors in R2 is consistent with those in R1. 

For example, B
T
={b1, b2, b3}, Ra=b4b2b1b3b5, Rb=b2b1b3, Rb is a trust relevant behavior trace 

of Ra. Only b1, b2 and b3 can affect trustworthiness of the virtual machine state while b4 and b5 

do not. The behaviors that do not change the trust of virtual machine state can be omitted. 

The inference below can be made based on the above definitions and trust validation 

theorem of virtual machine state. 

INFERENCE Assuming Rs is trust relevant behavior trace of system behavior trace R, if 

virtual machine state rt at the moment t is trustable and all system behaviors in Rs are trustable, 

virtual machine state rt+1=Q(R, rt) after occurrence of system behavior trace R is trustable. 

The inference indicates that in case of determining whether a virtual machine state is 

trustable, it only needs to verify the trustworthiness of the system behavior(e.g., writing 

system files, updating system policy) which changes the trust of virtual machine state. In the 

foregoing example, we only have to analyze Rb instead of Ra. This manner makes it possible to 

reduce the number of objects to be measured and decrease calculation required to verify the  

virtual machine state. 

Based on the trust validation theorem and its inference, two different measuring methods 

are applied to booting stage and runtime stage of the virtual machine respectively. 

1) Integrity-based measuring method. Measure integrity of VMM, relevant executive 

program of system domain and initial state of configuration file after the booting of platform to 

determine trustworthiness of the behavior measurement mechanism. 
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2) Behavior trace based measuring method. Measure state at one moment and system 

behavior trace after that moment to determine whether the virtual machine state is trustable. 

3. Dynamic Tree Style Trust Measurement Model 

In this section, we firstly analyze the shortcomings of current measurement schemes, and then 

provide DTSTM model which combines integrity-based measurement and behavior trace 

based measurement according to the features of cloud computing infrastructure. Finally we 

present workflow of the virtual machine measurement and analyze the security of DTSTM. 

3.1 Challenges 

A patch of the system, an upgrade or an alteration of an application, can change 

trustworthiness of a trust computing platform. A virtual machine which can be trusted at the 

booting stage may not be trusted at the runtime stage. Thus, dynamic trust measurement is 

required. 

In virtual environment, a real machine is equipped with a VMM component which 

executes several virtual machines, and a large number of application components execute on 

the virtual machines. The method provided by TCG specification can only conduct static 

measurement of traditional PC platform state, and lack the ability to dynamically measure 

trustworthiness of a running virtual machine. Additionally, trust measurement in the method 

assumes a one-to-one relationship which can hardly be developed into a one-to-many parallel 

relationship in virtual environment. 

 
Fig. 1. Chain Style and Star Style Measurement Model 

Sadeghi [16] and Chen [17] separately introduced the property-based attestation which 

employs TPM to measure the security properties without revealing the exact configurations of 

a target platform, but it is a tough nut to define property in cloud computing infrastructure. A 

direct solution for dynamic virtual machine measurement in cloud computing infrastructure is 

to expand a single chain style measurement [18][19]. When a new user domain is created, we 

can use Flicker [18] or TrustVisor [19] to restart measurement from bottom. The procedure is 

shown in Fig.1 (a). Therein, A is the root node; B to D are component nodes of system domain 

Dom0; E1 to Ei refer to all component nodes within user domain DomU1. The specific 

procedure goes in this way: Root node A measures nodes B, node B measures nodes C, node C 

measures nodes D. If they are verified trustable, node D measures nodes E1, node E1 measures 

node E2 and so on. However, in cloud computing environment, events such as boot of virtual 
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machine and load of module rarely occur, while creation and deletion of user domains are 

frequent. For this reason, the simple expansion method assumes low efficiency, and 

simultaneous measurement of several user domains may fail [20] (e.g. during measurement, 

DomU1 would lock up the whole virtual computing environment from DomU2 to DomUn). 

If a trust domain is built up based on star style model [21][22], all measurement is to be 

finished by one node, as shown in Fig. 1 (b). Node A is center node responsible for all 

measurement, and it would first measure B, C and D. If the nodes are verified trustable, node A 

will then measure Ei to Nj. However, there are a great variety of components operating in 

multi-tenant environment. To measure all the other nodes, center node would become 

complicated with poor expandability, as the center node A must accurately identify all 

components in DomU1 to DomUn. The implementation is extremely difficult in a multi-tenant 

environment like cloud computing. 

To sum up, there are two challenges for measuring the trust of virtual machine in cloud 

computing infrastructure: (1) dynamism of measurement. If software and hardware 

configuration and the state of the virtual machine change during runtime stage, it should be 

guaranteed that trustworthiness of the changed virtual machine will be measured; (2) 

concurrency of measurement. There are multiple operating virtual machines that belong to 

different trust domains. To avoid DoS attack, it should be prohibited to lock up other trust 

domains for measurement of one virtual machine. 

3.2 Structure 

To address the above problems, we provide a dynamic tree style trust measurement model 

called DTSTM which separates trust relationship between system domain and user domain. 

The trustworthiness of user domain will be measured by measurement module within system 

domain. If both of them are trustable, trust will be delivered to different user domains thus 

forming a parallel trust relationship. The structure of DTSTM is shown in Fig. 2. 

 
Fig. 2. The structure of DTSTM 

The integrity-based measurement mentioned in last section is adopted during booting stage of 

virtual machine. Since the loading sequence of modules is fixed, possibility of the module 

change is low, and the system is relatively stable. Behavior trace based measurement is applied 

to runtime stage for the users of virtual machine usually execute concurrently and the 

components change frequently. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014                                           312 

Copyright ⓒ 2014 KSII 

DTSTM is mainly composed of two parts. The upper part includes six components which 

are Core Root of Trust for Measurement (CRTM), BIOS, Boot Loader, System domain Kernel 

OS0 and Dynamic Trusted Measurement Agent (DTMA). Before DTMA executes, DTSTM 

builds up the trust chain based on traditional chain style measurement. When the model starts 

up, CRTM will first measure the integrity of BIOS. If BIOS is trustable, bootloader and VMM 

will be measured until the trust boundary is expanded to Dom0. TPM will store the measuring 

results for whole process. 

The lower part includes components of DTMA, User Domain Kernel OSun and user 

application component Pn. When trust is delivered to DTMA, DTMA will start new DomUi 

and dynamically monitor the behavior of User Kernel OSui and User Component Pi. If 

sensitive behavior is triggered, security attributes of all components will be measured and the 

results will be stored. 

DTMA is a key component of DTSTM. It measures trustworthiness of the user domain 

from system domain and ensures security of the measurement module itself. DTMA mainly 

consists of three sub-modules: 

(1) MA (Measurement Agent). MA measures integrity of the user components during 

booting stage of a virtual machine, monitors behavior of the components during runtime stage 

and conducts trust measurement for relevant components in case of sensitive operation and 

update of components. 

(2) SS (Secure Storage). SS provides secure storage service. To collect trustable evidences 

for software, it is inevitable to store and transfer evidences. The acquired evidence can be 

effectively protected using secure storage mechanism of TPM. SS aims to maintain the 

operating environment of TPM for each virtual machine including virtual machine relevant 

keys and data, physical PCR bound to each virtual machine and each virtual machine relevant 

Virtual PCR (VPCR). As for acquired trustable evidence of software, it will be signed by TPM 

thus verifying the trustworthiness of its source. 

(3) CM (Component Manager). CM manages installation, registeration, deletion, unload, 

upgrade, etc, and stores certificate attributes of the registered components. CM aims to deal 

with update requests of components in the virtual machine. If the security of the component 

changes, it will trigger MA to measure the components again. CM uses a component list to 

store register information and attribute certificate information of components. The same 

component is shared by multiple virtual machines. If the component is updated, CM will 

modify the item of component list. 

3.3 Workflow 

When measuring user application components, it is necessary for DTSTM to measure 

trustworthiness of the relevant components. All components except root component have a 

parent component and all component logics form a tree structure, as shown in Fig. 3. When a 

virtual machine is built on the trusted cloud computing platform, SS will establish a VPCR for 

this virtual machine to describe configuration and status of associated components while CM 

will set up a component tree which corresponds to this context. When a virtual machine 

instance executes, CM will compute the component tree according to the relevant components. 

Moreover, when a component is updated or the status of a component is changed due to hostile 

attack, MA will be activated to measure the component tree and update the measurement 

results. 
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Fig. 3. The structure of component tree 

The measurement process mainly includes construction and measurement of component 

tree, which is described as follows: 

(1) Construction of component tree. The component tree uses a list structure Nodes for 

storage, with each node structure consisting of component identification (id), component level 

(level) , child node pointer array (children) and parent node pointer (parent). The Nodes is a 

global variable. When a node is created, we assign an id to it. The id is a number that uniquely 

identifies a node. The level of root component is 0., the level of the child node will increase by 

1 on the basis of its parent’s level when it is created. The children point to all child nodes 

which originate from a node. The parent point to the node of its parent. The construction 

algorithm of component tree is shown in Algorithm 1. 

Algorithm 1. Construction Algorithm of Component Tree 

Input   : Nodes - array[0...N−1] of nodes 

Output: Root - Root of the component tree 

1. BuildComponentTree (Nodes) 

2.         Sort the points in ascending order of level for Nodes 

3.         for each p Nodes in ascending order of level do 

4.                 curNode := GetNode(p) 

5.                 relateNodes := GetRelateNode(p) 

6.                 for each q relateNodes in increasing order of level do 

7.                         adjNode := GetNode(q) 

8.                         parNode := GetParentNode(q) 

9.                         if (Nodes[curNode]level > Nodes[adjNode]level) then 

10.                                 Nodes[parNode]addChild(Nodes[curNode]) 

11.                                 Nodes[curNode]level := Nodes[adjNode]level 

12.                                 Nodes[curNode]parent := Nodes[adjNode] parent 

13.                         else 
14.                                 SetRelateNode(adjNode, curNode) 

15.                         end if 

16.                 end for 

17.         end for 
18.         Root := GetLowestNode(p) 

19. return Root 
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Input of the algorithm is the component node array (Nodes) and the result is root of the 
component tree (Root). Firstly, arrange node array of the component in an ascending sequence 
according to its node level (Line 2), and then select one node successively. The GetRelateNode 
function is invoked to get a node’s relevant node array (Lines 3 - 5). Compare level of the 
relevant nodes with that of the node to be inserted, and if the latter is higher, transfer the node 
to be the neighbor node of the relevant nodes (Lines 6 - 12), or else, establish relationship 
between this node with its relevant nodes (Line 14). As shown in Fig. 4, level of the relevant 
node 0

iN  is lower than that of 
1

m

iN 
, so insert the node below 

1

j

iN 
, and adjust its level to i. 

Lastly, select the node with lowest level from node array as root of component tree, and return 
(Lines 18 - 19). 

 
Fig. 4. The construction of component tree 

(2) Measurement of component tree. No matter a component update is triggered by a 

normal user or a hostile attack, the trust of the computing environment alters. DTSTM 

conducts real-time monitoring of changes of the components. When the status of a component 

changes, the measurement algorithm of component tree will be invoked to verify its 

trustworthiness. The measurement algorithm of the component tree is shown in Algorithm 2. 

Algorithm 2. Measurement Algorithm of the Component Tree 

Input   : Nodes - array[0...N−1] of nodes, mNode – measured node 

Output: Trust – trust of monNode 

1. MeasureComponent (Nodes, mNode) 

2.         rootNode := GetRootNode(mNode) 

3.         childNodes := GetChildNode(rootNode) 

4.         Sort the points in ascending order of level for childNodes 

5.         for each pchildNodes in ascending order of level do 

6.                 adjNode := GetNode(p) 

7.                 if (Nodes[adjNode]trust  TRUE) then 

8.                         mLevel:= GetLevelNode(mNode) 

9.                         if (Nodes[adjNode]level < mLevel) then 

10.                                 b := GetBehave(adjNode) 

11.                                 Nodes[adjNode]trust := H(adjNode)En && (F(b)==True) 

12.                                 SetRelateTrust(adjNode, Nodes[adjNode]trust) 

13.                         end if 

14.                 end if 

15.         end for 

16.         Trust := Nodes[mNode]trust 

17. return Trust 
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Input of the algorithm is the component node array (Nodes) and the measurement node 

(mNode). Output is the trustworthiness of the measurement node. Firstly, acquire the root node 

and all child nodes below the root node, and arrange these nodes in an ascending sequence 

according to their levels (Lines 2-4). Next, select the node’s child node successively to check 

its trustworthiness. If the node is not trusted and its level is lower than the measurement node’s 

level (Lines 8 and 9), measure whether the subject and behavior of the child node are both 

trusted (Line 11) according to the validation theorem and update trustworthiness of the 

relevant nodes (Line 12). Lastly, return the measured result. 

An example is shown in Fig. 5. When 
1

m

iN 
 is altered, firstly, measure trustworthiness of 

the node. Secondly, trace back to bottom node 
1

j

iN 
 through parent node l

iN ; and then, 
measure trustworthiness of 0

iN  and n

iN  respectively. In case of any change, update 
trustworthiness of 

1

j

iN 
, l

iN  and 
1

m

iN 
 during the backtracking process. Lastly, return the 

measured result. 

 
Fig. 5. The measurement of component tree 

3.4 Security Analysis 

This section will further make a quantitative security evaluation of DTSTM. For the purpose 

of formal description of the model, components related to DTSTM are defined in Table 1: 

Table 1. Main elements 
Notation Element and implication 

S S={p|p is any component} 

S
U
 S

U
={p|p is any untrusted component} 

S
T
 S

T
={p|p is any trusted component}=S－S

U
 

S
M

 S
M

 ={p|pS
U
 and contains malicious codes} 

S
I
 S

I
={p|pS

U
 and does not contain malicious codes}=S

U－S
M

 

S
V
 S

V
={p|pS

T
 and contains vulnerable codes} 

S
S
 S

S
={p|pS

T
 and does not contain vulnerable codes}=S

T－S
V
 

Senv Senv={p|p is any component operating in env}, envENV={RT, OS0, OSU} 

P(p) pSenv: probability that p damages the security of its environment (env) 

P
M

(p) pSenv: probability that p contains malicious codes in env 

P
V
(p) pSenv: probability that p contains vulnerable codes in env 

Size(p) Source codes lines of component p, indicating the scale of p 

Note: CRTM, BIOS, BootLoader and VMM is simplificated as RT; OS0 means kernel of system domain 

and OSU means kernel of user domain. 

The following formulas are based on these expressions: 

( ) ( )T U V S M IS S S S S S S                                                (1) 

( ) ( ) ( )M VP p P p P p                                                         (2) 
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Based on Formula (1) and Formula (2), we obtain that as components in operating 

environment env grow in number, the security of env decreases gradually. This conclusion can 

be expressed with the formula below: 

( ) ( ) ( ) ( ),
env env

env env env env

p S p S

P S P p P S P p S S
  

                                      (3) 

Sam et al. [23] proposed that if software design quality, code complexity and code 

implementation quality are almost equal, the vulnerability of software p is approximately in 

direct proportion to Size (p) and a security vulnerability remains uncovered every one 

thousand lines of codes in average. Therefore, P
V
(p) can be simplified as Formula (4) below, 

where α is an empirical constant. 

V ( )
( ) ,

( )
i env

env

i

p S

Size p
P p p S

Size p




  


                                                (4) 

As for traditional multi-task operating system (OS), P(SOS) can be expressed as the 

following formula: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

T U T U

OS OS OS OS OS

S V M I

OS OS OS OS

V M I

OS OS OS

P S P S S P S P S

P S P S P S P S

P S P S P S

   

   

  

                                      (5) 

As all components in definition S

OSS  are trusted and do not contain any vulnerable codes, 

( )S

OSP S  is omitted in the final results of Formula (5). 

The formulas below point out aspects regarding the security of user domain and system 

domain in DTSTM: 

( ) ( ) ( ) ( )
U U U U

U M I

OS OS OS OSP S P S P S P S                                           (6) 

User domain which consists of various application components may contain malicious 

codes and thus is untrusted, as shown in Formula (6). 

0 0 0 0 0
( ) ( ) ( ) ( ) ( )T V S V

OS OS OS OS OSP S P S P S P S P S                                     (7) 

The system domain of DTSTM only contains verified management components. Most 

verified codes of the componets do not contain vulnerabilities, so the security of the system 

domain mainly depends on the components which suffer from vulnerabilities, as shown in 

Formula (7). 

In system operating environment, only DTSTM RT, system domain Dom0 exchange data 

with other user domains, and following formula can be obtained: 

0 0 , ( ) ( 0) ( )V

OS RT DomS S S Size RT Size Dom Size OS                              (8) 

As DTSTM software is much smaller than a traditional OS in scale, it is superior in 

reliability. Based on the Formulas (3), (4), (7) and (8), the following inequality can be 

obtained: 

0 0( ) ( ) ( ) ( ) 1OS RT Dom OSP S P S P S P S                                         (9) 

The focus of DTSTM is the security of system domain. The probability that isolated codes 

in DTSTM virtual machine lower the security of system domain can be depicted as follows: 

0 0 0
( | ) ( ) ( ) ( ) ( )

U UOS OS Dom OS OS OSP S S P S P S P S P S                               (10) 
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0
( | )

UOS OSP S S  indicates that components in 
UOSS  break through the security protection of 

UOS , 
0OS  simultaneously. Based on the Formula (9) and Formula (10), we obtain 

0
( | ) ( )

UOS OS OSP S S P S                                                     (11) 

From Inequality (11), it can be seen that DTSTM significantly improves the security of 

system domain. 

4. Implementation and Evaluation 

We implement a DTSTM-based system for virtual machine trust measurement on the basis of 

VMM-level SCI [24] and VMI [25]. The effectiveness of the trust measurement system is 

verified with four groups of malicious code samples, and the measurement overhead is 

evaluated with lmbench test set. 

4.1 System Overview 

 
Fig. 6. DTSTM-based trust measurement system architecture 

Fig. 6. shows the architecture of DTSTM-based system for trust measurement. SCI module 

intercepts system call events in user domain, reconstructs system call sequence related to the 

loading of the executable program, and transfers the sequence to DTMA module after 

comparing it with the white list. DTMA module acquires behavior of the virtual machine 

based on system call sequence and system call context extracted by VMI module. It verifies 

whether the called subject file is complete and whether the behavior accords with the 

anticipated policy. The verification results will be saved to provide trust measurement 

evidence for user.  

4.1.1. SCI Module 

In modern OS, user program accesses kernel through system call. When user program 

initiates a system call, it will first move system call parameters to the relevant register and then 
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execute the interrupt instruction to trap into kernel. However, in a virtualization environment, 

VMM must intercept the system calls before measuring user behavior. 

In [24], hardware virtualization technology is used to intercept system calls at VMM level. 

We, however, intercept system calls of virtual machine on the basis of [24] and using the white 

list technology. In DTSTM, SCI is located at Virtual Machine Monitor (VMM) and 

responsible for intercepting the system calls. It acquires system call events, maintains a white 

list for system call according to measurement requirements, and matchs system call numbers 

with the white list to identify whether it is necessary to measure the behavior. The main 

working steps are listed as follows: 

1) SCI turns off direct call of DomU system call, and DomU traps into VMM level when 

initiating a system call. After intercepting the system call, SCI will set entry address of the call 

as an illegal address and return to DomU; 

2) When executing codes at this address, DomU will generate a page fault, thus initiate 

vmexit instructions and trap into VMM level again. SCI will intercept this VMM exception 

handling process; 

3) SCI can acquire system call numbers according to the values of EAX and match them 

with the white list. If the measurement is necessary, it will send the numbers to MA. MA will 

identify the behavior by matching the system call IDs and the context; 

4) After the execution, entry address of the original system call will be recovered for 

normal execution of the procedure. 

Through the above processes, DTSTM is able to monitor the behaviors in user domain such 

as load of software module, file read and write, call of sensitive operations and realize 

measurement of user domain through analysis of their behaviors. 

4.1.2. VMI Module 

In order to ensure the security of measurement module itself and the authenticity of key 

data, we use VMI to acquire data of user domain. In this way, the measurement module is 

independent of the security of user domain kernel. 

When MA takes control of the system calls, VMI module acquires contextual information 

of the system calls from user domain. As there is a semantic gap between user domain and 

system domain, VMI adopts LibVMI [26] to access any physical memory location of the user 

so as to realize introspection of user space data. LibVMI runs in Dom0 and accesses the 

original data of memory of user domain through XenControl. 

MA module in Dom0 makes use of VMI to acquire the memory data of DomU through 

following six steps: 

1) VMI makes requests to acquire key data of user and kernel spaces; 

2) LibVMI finds the requested kernel address and virtual address through System map; 

3) VMM maps the kernel page directory (KPD) to the memory space of Dom0 and makes 

use of KPD to find the correct page table (PT); 

4) VMM maps PT to the memory space of Dom0 and finds the correct address of data page 

in PT; 

5) VMM maps the data page to the memory address space of Dom0 and returns it to the 

LibVMI library; 

6) LibVMI returns the pointer and offset of the data sheet with read/write permissions to 

VMI. 
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Through the above procedures, MA module can acquire data structures of system kernel 

symbols in Dom0, e.g. task_struct. Based on the data structures, MA module acquires the 

process list, module list and other information to judge whether there is any malicious 

behavior. 

4.2 System Evaluation 

The security analysis of DTSTM in Section 3.4 shows that this model is superior to traditional 

chain style model in security. In this section, we verify effectiveness and overhead of our 

system. 

Our prototype system runs on a 2.8GHz Intel Core i5 processor with 4GB memory and a 

500G 7200RPM Seagate hard disc. The system is based on a Xen virtualization platform, 

consisting of tboot1.7.3 (for bootloader), Xen4.1.4 (for VMM) and Linux3.2.0 kernel (for 

system domain kernel), with both WindowsXP and Ubuntu12.04 virtual machines installed on 

Xen. 

4.2.1 Effectiveness 

In order to demonstrate the advantages of DTSTM in dynamic measurement, we compare it 

with Xen and IMA [15]. According to the supported OS and code type, four representative 

malicious sofewares are selected, i.e. poisonivy-rat [27], hxdef [28], lrk5 [29] and adore-ng 

[30]. The software samples are shown in Table 2. 

Table 2. Samples for effectiveness test 

Sample Supported OS Type Binary Size(KB) 

poisonivy-rat Windows backdoor 2,092 

hxdef Windows rootkit 68 

lrk5 Linux backdoor 3,223 

adore-ng Linux rootkit 21 

The results of effectiveness test on DTSTM are shown in Table 3, where “” indicates that 

malicious codes are detectable while “—”, undetectable. 

Table 3. Effectiveness test results 

Sample 
poisonivy-rat hxdef lrk5 adore-ng 

Booting Runtime Booting Runtime Booting Runtime Booting Runtime 

Xen — — — — — — — — 

IMA  —  —  —  — 

DTSTM         

1) User-level programs. Poisonivy-rat and lrk5, two popular backdoors, are used to verify 

effectiveness of DTSTM by measuring the integrity of application programs in Windows and 

Linux environments. Poisonivy-rat and lrk5, realize self-starting by tempering with normal 

programs, and accept remote connection when executed. In the experiment, Xen does not 

perform trust verification and thus can not discover all samples. IMA can not detect malicious 

codes executed in runtime stage though it is able to discover samples in booting stage. DTSTM, 

however, discovers loading of malicious programs and measures their integrity, and then 

identifies the programs are malicious by comparing them with the existing fingerprints in 

fingerprint database, thus directly terminates the loading process. 

2) Kernel-level programs. Attacks usually invade kernel of the OS by loading malicious 

kernel module. We adopt hxdef and adore-ng, two well-known kernel-level rootkits of 
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Windows and Linux, to verify effectiveness of DTSTM kernel module. As in user application 

program experiments, Xen can not detect malicious codes and IMA can only detect malicious 

codes during booting of the system, while DTSTM can detect samples during runtime. We add 

hxdef and adore-ng to white list of DTSTM and load them to kernel. In the experiment, hxdef 

and adore-ng are detected by DTSTM as soon as they maliciously temper with kernel module 

after booting, which indicates DTSTM can detect attacks on kernel module both effectively 

and timely. 

4.2.2 Performance 

In order to evaluate the influence of DTSTM on system performance, we respectively test 

running of system calls and application programs. 

1) System call test. We adopt lmbench as the test set. As DTSTM is implemented based on 

system call interception and analysis, test indexes associated with system calls are specifically 

selected from lembench and compared with standard Xen to analyze the performance 

overhead introduced by DTSTM. Table 4 gives corresponding test results. 

Table 4. System call test results (us) 

Micro Benchmark null open/close read write fork+exec 

Xen 0.82 21.82 2.19 1.24 2303 

DTSTM 1.23 23.46 2.62 2.28 4378 

It is found that DTSTM has little influence on open/close and read/write operations, but the 

performance overhead is obvious under fork+exec test indexes. The fork+exec consists of 

three steps, namely system call interception, program path position and program file 

measurement, and the process of computing hash values of executable files takes a long time. 

The required time for DTSTM to measure files is almost two times as much as that of standard 

Xen. However, hash values of executable files are usually computed only once before running 

and fork+exec operations hold a relatively low proportion in daily programs, and DTSTM can 

ensure integrity of the programs compared with Xen, the overhead is acceptable. 

2) Application program test. In order to further evaluate the performance of DTSTM, 

performance overhead of 6 common application programs are tested, as shown in Table 5: 

Table 5. Samples for application program test 

Item Command 

Getpid getpid-2000.sh 

Decompression tar zxf linux-source.tar.bz2 

Compression tar zcf linux-source 

File Copy cp /usr/linux-source /linux-source 

Kernel Build make 

Linux Boot Linux boot 

Fig. 7 shows the application program test results of Xen and DTSTM. From the point of 

overall trend, DTSTM exerts some influence on system performance. The main reason is 

DTSTM needs to intercept system calls at upper level by forcing a page fault to make current 

execution flow trap into VMM level. 
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Fig. 7. Application program test results of DTSTM 

As DTSTM needs to intercept system calls, the performance overhead of getpid test program 

is relatively high. For compression and decompression programs which refer to 

computation-intensive work, DTSTM only introduces 2.7% performance overhead. The file 

copy requires a relatively large system overhead because it is I/O-intensive and includes a lot 

of read and write operations and DTSTM intercepts write system calls to prevent modification 

of loaded software files. The kernel compilation, though taking a long time, brings about a 

relatively small system overhead as it calls few types of compilation programs. All executable 

programs of DTSTM verification will be loaded during booting of Linux, so the boot test 

performs general overhead of DTSTM. It can be seen from the figure that the performance 

overhead of DTSTM is approximately 1.5%, a relatively low result. 

5. Related Work 

Trust measurement of virtual machine is considered as one of the key challenges in cloud 

computing security. Santos et al [4] proposed a trusted cloud computing platform (TCCP) 

which provides a closed box execution environment to ensure confidentiality of the running 

virtual machine and allows the users to attest to the IaaS provider and determine whether or not 

the service is secure before they launch their virtual machines. TCCP has to measure all loaded 

modules such as configuration information of hardware and software of the platform, thus 

generating redundancy [31]. 

The measurement method proposed in [9] is based on platform attribute to reduce 

redundancy, but the platform attribute is an abstract concept which is always difficult to 

describe and define. DTSTM, however, uses behavior trace to describe the status of virtual 

machine, which is accurate and easy to implement. 

Chain style measurement proposed by TCG is applicable to traditional PC platform, with 

no consideration for virtualization environment. vTPM [11] virtualizes entity TPM and 

constructs multiple trust chains above VMM layer. The method can be considered as a simple 

extension on the basis of chain measurement. However, it can not solve the relevance problem 

of trust relationship between virtual machines in cloud computing environment. 

ETPM [23] uses a root node which located at central position to measure other nodes. The 

star style measurement is complex and poor extensibility, though it improves measurement 

security. DTSTM, however, adopts tree style measurement according to the characteristics of 

cloud computing, which improves expansibility and concurrency of measurement. 

BonaFides [7] periodically measures integrity of the virtual machine kernel and files. This 

kind of measurement system lacks flexibility, as its measurement timing is determined by 
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system designer rather than the actual user. If virtual machine is damaged after measurement, 

the measurement will give wrong results. DTSTM, however, intercepts system calls in real 

time, thus preventing security problems caused by inconsistency of measurement and running. 

6. Conclusions and Future Work 

The main approach of implementing secure and trusted cloud computing is to effectively 

create a trusted virtualization environment, and ensure trustworthiness of the software in 

virtual machine. In view of the characteristics and requirements in cloud computing 

environment, we propose a model named DTSTM, which reduces complexity of trust 

measurement by separating system domain and user domain with different methods. DTSTM 

solves the problems of traditional measurement schemes in terms of dynamism, security and 

concurrency, and improves practicability and expandability simutaneously. Moreover, 

experimental results indicate practicability and high performance of the model. 

There are two main directions to which our measurement model can be extended. First, it is 

necessary to prove the trusted status of platform to user after platform measurement of virtual 

machine. Traditional attestation scheme mainly aims at a single host machine while a large 

number of virtual machines are included in cloud computing system, so there are such 

problems as single point failure and low attestation efficiency. For this reason, it is important 

to improve the efficiency and security of the attestation. Second, it is crucial to discover 

security policy violations in the model. In case of violations among these security policy, 

trustworthiness of the software can not be judged. Therefore, it also requires in-depth study to 

effectively implement policy violation discovery in cloud computing infrastructure. 
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Appendix A – Abbreviation 

BIOS Basic Input Output System 

CM Component Manager 

CRTM Core Root of Trust for Measurement 

DTMA Dynamic Trusted Measurement Agent 

DTSTM Dynamic Tree Style Trust Measurement Model 

IMA Integrity Measurement Architecture 

MA Measurement Agent 

OS Operating System 

PCR Platform Configuration Registers 

SCI System Call Interceptor 

SS Secure Storage 

TCCP Trusted Cloud Computing Platform 

TCG Trusted Computing Group 

TPM Trusted Platform Module 

VMI Virtual Machine Introspection 

VMM Virtual Machine Monitor 

VPCR Virtual PCR 
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