• 제목/요약/키워드: Behavior monitoring

검색결과 1,160건 처리시간 0.025초

Biological Constraints in Algal Biotechnology

  • Torzillo, Giuseppe;Pushparaj, Benjamin;Masojidek, Jiri;Vonshak, Avigad
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권6호
    • /
    • pp.338-348
    • /
    • 2003
  • In the past decade, considerable progress has been made in developing the appropriate biotechnology for microalgal mass cultivation aimed at establishing a new agro-industry. This review points out the main biological constraints affecting algal biotechnology outdoors and the requirements for making this biotechnology economically viable. One of them is the availability of a wide variety of algal species and improved strains that favorably respond to varying environmental conditions existing outdoors. It is thus just a matter of time and effort before a new methodology like genetic engineering can and will be applied in this field as well. The study of stress physiology and adaptation of microalgae has also an important application in further development of the biotechnology for mass culturing of microalgae. In outdoor cultures, cells are exposed to severe changes in light and temperature much faster than the time scale re-quired for the cells to acclimate. A better understanding of those parameters and the ability to rapidly monitor those conditions will provide the growers with a better knowledge on how to optimize growth and productivity. Induction of accumulation of high value products is associated with stress conditions. Understanding the physiological response may help in providing a better production system for the desired product and, at a later stage, give an insight of the potential for genetic modification of desired strains. The potential use of microalgae as part of a biological system for bioremediation/detoxification and wastewater treatment is also associated with growing the cells under stress conditions. Important developments in monitoring and feedback control of the culture behavior through application of on-line chlorophyll fluorescence technique are in progress. Understanding the process associated with those unique environmental conditions may help in choosing the right culture conditions as well as selecting strains in order to improve the efficiency of the biological process.

Introduction of Hydraulic Field Investigation Method to Utilize on the Inhabitation Environment Definition at a River

  • Lee, Hyun-Seok;Kim, Young-Sung;Lee, Geun-Sang;Seo, Jin-Won;Yang, Jae-Rheen;Kwon, Hyung-Joong
    • 생태와환경
    • /
    • 제41권4호
    • /
    • pp.547-553
    • /
    • 2008
  • In recent years, attention on the inhabitation environments of animals and plants which coexist with humans is growing more and more, and relevant research is being activated. In habitats of rivers, a lot of factors are interacting, even among them, some elements especially such hydraulic factors as water velocity and water depth, and such geological shapes as gravels, sand and mud are being considered as primary elements. In this study, various field investigations are carried out to determine the relationship between the river habitats of fishes and hydraulic primary elements using high-tech equipments. Furthermore numerical experiments to classify such habitats according to topographical spaces are carried out. In detail, hydraulic field investigations performed in this study can be summarized as topographical survey, discharge measurement, water level fluctuation monitoring and so on. In numerical experiments, the RMA2 model of the commercial program, Surface-Water Modeling System (SMS), which is widely used in conducting a two-dimensional analysis of the flow behavior of a river is utilized. In conclusion, as a result of field investigation, the relationship between water velocity and water depth is obtained. And the relationship between water velocity and water temperature is identified, too. Finally, using above obtained results, the inhabitation environment was classified into Riffle, Glide, Run, Pool, and E.D.Z according to the relationship between water velocity and water depth.

The engineering merit of the "Effective Period" of bilinear isolation systems

  • Makris, Nicos;Kampas, Georgios
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.397-428
    • /
    • 2013
  • This paper examines whether the "effective period" of bilinear isolation systems, as defined invariably in most current design codes, expresses in reality the period of vibration that appears in the horizontal axis of the design response spectrum. Starting with the free vibration response, the study proceeds with a comprehensive parametric analysis of the forced vibration response of a wide collection of bilinear isolation systems subjected to pulse and seismic excitations. The study employs Fourier and Wavelet analysis together with a powerful time domain identification method for linear systems known as the Prediction Error Method. When the response history of the bilinear system exhibits a coherent oscillatory trace with a narrow frequency band as in the case of free vibration or forced vibration response from most pulselike excitations, the paper shows that the "effective period" = $T_{eff}$ of the bilinear isolation system is a dependable estimate of its vibration period; nevertheless, the period associated with the second slope of the bilinear system = $T_2$ is an even better approximation regardless the value of the dimensionless strength,$Q/(K_2u_y)=1/{\alpha}-1$, of the system. As the frequency content of the excitation widens and the intensity of the acceleration response history fluctuates more randomly, the paper reveals that the computed vibration period of the systems exhibits appreciably scattering from the computed mean value. This suggests that for several earthquake excitations the mild nonlinearities of the bilinear isolation system dominate the response and the expectation of the design codes to identify a "linear" vibration period has a marginal engineering merit.

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제9권3호
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

한부모 가정의 청소년이 지각한 부모양육태도 및 정서적 문제가 삶의 만족도에 미치는 영향 (The Effects of Perceived Parenting Attitudes and Emotional Problems on Life Satisfaction among Adolescents in Single Parent Families)

  • 박주희
    • 가족자원경영과 정책
    • /
    • 제20권1호
    • /
    • pp.1-22
    • /
    • 2016
  • The purpose of this study is to propose measure for the effects of perceived parenting attitudes and emotional problems on life satisfaction among adolescents in single parent families with the parent resource perspective. The study consisted of 230 first grade middle school students from single parent (living with either mother or father only) families in the 4th year panel (2013) of the Korean Children and Youth Panel Survey (KCYPS), National Youth Policy Institute (NYPI). All statistical data analyses were performed using SPSS version 21.0. The findings of this study are as follows. First, lower levels of depression and aggression were found among adolescents who perceived parenting attitude as more affectionate. On the contrary, higher levels of depression and aggression were detected among adolescents who perceived parenting attitude as more intrusiveness. The more the inconsistent parenting practices perceived by adolescents, the higher the degree of depression. Second, a higher level of life satisfaction was found among adolescent who were more likely to perceive positive parenting attitudes including monitoring, affection and reasoning. However, there was no significant correlation between negative parenting behavior and life satisfaction. Third, a lower level of life satisfaction was observed among adolescent who were more likely to perceive emotional problems such as depression, aggression and social withdrawal. Fourth, according to the analysis on the effects of parenting attitudes and emotional problems on life satisfaction, affection parenting of all positive parenting styles and depression among emotional problems had an impact on life satisfaction. The more affectionate a parent is with his/her children in parenting, the lower the degree of depression in adolescents, and the lower degree of depression in adolescents, the higher degree of life satisfaction was found among adolescents from single parent households.

수치해석과 현장계측을 통한 병렬터널의 최소 필라폭과 보강에 대한 평가 (Assessment of minimum pillar width and reinforcement of parallel tunnel using numerical analysis and field monitoring)

  • 안용관;공석민;이용주
    • 한국터널지하공간학회 논문집
    • /
    • 제16권3호
    • /
    • pp.299-310
    • /
    • 2014
  • 국가적으로 국토의 효율적 활용과 친환경성 등으로 인해 터널과 같은 지하공간 건설이 필요하다. 친환경적 요소의 중요성을 감안할 때, 산악지에 형성되는 도로건설에 대해 2-아치 및 대단면 터널로 계획되나 경제성, 시공성, 공사기간, 유지관리 등의 문제점을 가지고 있다. 따라서 본 연구에서는 2차로의 국도터널을 기준으로 현장조건과 지반조건을 고려하여 터널별 이격거리와 토피고를 변화시켜 경험식과 수치해석적으로 필라부의 안전성을 평가하였으며, 해석 프로그램으로 유한요소법을 적용한 Plaxis 2D를 활용하여 터널의 최소 필라폭 선정과 전체적인 터널의 거동특성을 분석하였다. 분석결과, Tie-Bolt에 의한 필라보강은 연직하중을 분산시켜 안전적인 근접병렬터널 계획이 가능하며, 터널 필라의 거동은 현장계측 결과와 잘 일치하는 것으로 나타났으며, 지반조건에 따라 터널 필라폭을 축소시킨다면 이전의 터널에 비해 효율적인 터널 활용이 가능하다.

소비자만족과 지속가능 경영을 위한 기업의 핵심가치의 역할과 중요성 -L-그룹 사례를 중심으로 (The Role and Importance of Core value for Customer Satisfaction and Sustainablity Management)

  • 김성건;이재진
    • 디지털융복합연구
    • /
    • 제11권5호
    • /
    • pp.211-223
    • /
    • 2013
  • 오늘날 급변하는 경영환경 속에서 미래에 대한 불확실성이 증대됨에 따라 기업이 시장 환경에 대응하고 함께 번영하여 '계속적 기업(Going concern)'으로 살아남기 위해서 '핵심가치'가 부각되고 있다. 기업의 핵심 가치는 '조직의 미션이나 비전을 성취하는데 도움을 줄 수 있는 행동 방식에 대한 것으로 핵심가치가 대두되게 된 배경은 "윤리점검"과 "사업적 목표 달성"이다. 이러한 핵심가치는 기업이념 속에서 쉽게 찾아 볼 수 있다. 기업이념이란 회사를 어떤 목적에서 또 어떤 방식으로 경영해 나갈 것인가에 대한 기본적 생각, 사상을 표현한 것으로 경영자가 스스로 기업 경영에 대해 사회적으로 공표한 견해로 최근 많은 국내 글로벌 기업들이 핵심가치에 기반을 둔 기업이념을 선포하였다 이에 국내 대기업인 L- 그룹의 사례인 L- Way를 통해 핵심가치가 기업이 지속가능한 경영에 미치는 역할과 중요성에 대해 알아보기 위한 연구이다.

현장실험과 수치해석을 통한 GFRP 록볼트 센서의 적용성 연구 (A Study on the Application of GFRP Rock Bolt Sensor through Field Experiment and Numerical Analysis)

  • 이승주;장석현;이강일;김범주;허준;김용성
    • 한국지반신소재학회논문집
    • /
    • 제18권4호
    • /
    • pp.129-138
    • /
    • 2019
  • 본 연구에서는 모니터링이 가능한 나선형 철근 록볼트 센서와 GFRP 록볼트 센서를 대형 모형사면에 매설하여 사면붕괴 현장실험을 수행하고 개별요소법 및 유한요소법의 수치해석을 수행한 후 사면붕괴 초기에 발생하는 비탈면의 거동 특성을 분석하였다. 또한, 현장실험과 수치해석 결과를 비교·분석하고 나선형 철근 록볼트 센서와 GFRP 록볼트 센서의 암반 사면붕괴 모니터링으로 현장 적용성에 대해 고찰하였다. 본 연구를 통해 스마트 사면 붕괴 예·경보 시스템을 개발하였으며 향후 이 시스템은 산사태 및 지반 붕괴 전조정보를 사전에 감지하여 붕괴위험 지역에 거주하는 주민들의 원활한 대피를 유도하는데 활용될 수 있을 것으로 판단된다.

호내 부유물질 거동 분석을 통한 도암댐 운영 방안에 관한 연구 (Study on the Management of Doam Dam Operation by the Analysis of Suspended Solids Behavior in the lake)

  • 염보민;이혜원;문희일;윤동구;최정현
    • 한국물환경학회지
    • /
    • 제35권6호
    • /
    • pp.470-480
    • /
    • 2019
  • The Doam lake watershed was designated as a non-point pollution management area in 2007 to improve water quality based on watershed management implementation. There have been studies of non-point source reduction with respect to the watershed management impacting the pollutant transport of the reservoir. However, a little attention has been focused on the impact of water quality improvement by the management of the dam operation or the guidelines on the dam operation. In this study, the impact of in-lake management practices combined with watershed management is analyzed, and the appropriate guidelines on the operation of the dam are suggested. The integrated modeling system by coupling with the watershed model (HSPF) and reservoir water quality model (CE-QUAL-W2) was applied for analyzing the impact of water quality management practices. A scenario implemented with sedimentation basin and suspended matter barrier showed decrease in SS concentration up to 4.6%. The SS concentration increased in the scenarios adjusting withdrawal location from EL.673 m to the upper direction(EL.683 m and EL.688 m). The water quality was comparably high when the scenario implemented all in-lake practices with water intake at EL.673 m. However, there was improvement in water quality when the height of the water intake was moved to EL.688 m during the summer by preventing sediments inflow after the rainfall. Therefore, to manage water quality of the Doam lake, it is essential to control the water quality by modulating the height of water intake through consistent turbidity monitoring during rainfall.

도시철도 터널 내부 콘크리트 도상 국소공명흡음판의 흡음계수 및 구조안정성 평가를 위한 계측시스템 개발 (Developments of monitoring system to measure sound absorbing coefficient and structural stability of sound absorbing panel on the concrete track in the urban train tunnel)

  • 오순택;이동준;이동훈
    • 한국터널지하공간학회 논문집
    • /
    • 제19권1호
    • /
    • pp.1-9
    • /
    • 2017
  • 본 연구에서는 터널 내 콘크리트 도상을 모사하여 현장실험을 수행하였다 그리고 도시철도터널 내 콘크리트도상의 반사소음을 저감하기 위한 다중국소공명 흡음판의 이론적 평가항목과 한계를 고려하여 허용한계를 연구하였다. 본 연구결과는 도시철도 터널 구간에서의 차량 주행속도에 따른 유동 영향에 의한 흡음판의 흡음계수를 분석하고, 구조안정성을 효율적으로 평가할 수 있는 최대 변위와 변위가 속도 및 동적특성인 감쇠비와 고유진동수를 효과적으로 도출할 수 있는 계측시스템을 제안한다.