• Title/Summary/Keyword: Behavior monitoring

Search Result 1,155, Processing Time 0.027 seconds

Analysis of Slope Behavior Using TDR Sensor (TDR센서를 이용한 사면거동 해석)

  • Park, Min-Cheol;Lee, Jae-Ho;Han, Heui-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.79-86
    • /
    • 2010
  • In this paper, using soil slope inclinometer observations of lateral flow is used as a traditional way, but there are some decisions. Inclinometers in the process of installing and monitoring is costly. Severe incline slope of the lateral flow is observed in the inefficient. As a solution for it using TDR sensors are used to. Metal conductors such as coaxial cable and general cable uses a measurement sensor can be installed on site at a lower cost and slope measurements are available for long-term monitoring. When TDR sensor is installed on the slopes, changes in the behavior of slopes causes the earth pressure. TDR sensors determine the change of earth pressure and tried to analyze the behavior of slopes.

  • PDF

Sensitivity analysis of mechanical behaviors for bridge damage assessment

  • Miyamoto, Ayaho;Isoda, Satoshi
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.539-558
    • /
    • 2012
  • The diagnosis of bridge serviceability is carried out by a combination of in-situ visual inspection, static and dynamic loading tests and analyses. Structural health monitoring (SHM) using information technology and sensors is increasingly being used for providing a better estimate of structural performance characteristics rather than above traditional methods. Because the mechanical behavior of bridges with various kinds of damage can not be made clear, it is very difficult to estimate both the damage mode and degree of damage of existing bridges. In this paper, the sensitivity of both static and dynamic behaviors of bridges are studied as a measure of damage assessment through experiments on model bridges induced with some specified artificial damages. And, a method of damage assessment of bridges based on those behaviors is discussed in detail. Finally, based on the results, a possible application for structural health monitoring systems for existing bridges is also discussed.

Optimal sensor placement for structural health monitoring based on deep reinforcement learning

  • Xianghao Meng;Haoyu Zhang;Kailiang Jia;Hui Li;Yong Huang
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.247-257
    • /
    • 2023
  • In structural health monitoring of large-scale structures, optimal sensor placement plays an important role because of the high cost of sensors and their supporting instruments, as well as the burden of data transmission and storage. In this study, a vibration sensor placement algorithm based on deep reinforcement learning (DRL) is proposed, which can effectively solve non-convex, high-dimensional, and discrete combinatorial sensor placement optimization problems. An objective function is constructed to estimate the quality of a specific vibration sensor placement scheme according to the modal assurance criterion (MAC). Using this objective function, a DRL-based algorithm is presented to determine the optimal vibration sensor placement scheme. Subsequently, we transform the sensor optimal placement process into a Markov decision process and employ a DRL-based optimization algorithm to maximize the objective function for optimal sensor placement. To illustrate the applicability of the proposed method, two examples are presented: a 10-story braced frame and a sea-crossing bridge model. A comparison study is also performed with a genetic algorithm and particle swarm algorithm. The proposed DRL-based algorithm can effectively solve the discrete combinatorial optimization problem for vibration sensor placements and can produce superior performance compared with the other two existing methods.

Smart Safety Belt for High Rise Worker at Industrial Field

  • Lee, Se-Hoon;Moon, Hyo-Jae;Tak, Jin-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.63-70
    • /
    • 2018
  • Safety management agent manages the risk behavior of the worker with the naked eye, but there is a real difficulty for one the agent to manage all the workers. In this paper, IoT device is attached to a harness safety belt that a worker wears to solve this problem, and behavior data is upload to the cloud in real time. We analyze the upload data through the deep learning and analyze the risk behavior of the worker. When the analysis result is judged to be dangerous behavior, we designed and implemented a system that informs the manager through monitoring application. In order to confirm that the risk behavior analysis through the deep learning is normally performed, the data values of 4 behaviors (walking, running, standing and sitting) were collected from IMU sensor for 60 minutes and learned through Tensorflow, Inception model. In order to verify the accuracy of the proposed system, we conducted inference experiments five times for each of the four behaviors, and confirmed the accuracy of the inference result to be 96.0%.

Thermo-structural monitoring of RCC dam in India through instrumentation

  • Ashtankar, V.B.;Chore, H.S.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.95-113
    • /
    • 2015
  • The knowledge of the behavior of any roller compacted concrete (RCC) dam and its foundation is gained by studying the service action of the dam and its foundation using measurements of an external and internal nature. The information by which a continuing assurance of structural safety of the RCC dam can be gauged is of primary importance. Similarly, the fact that the information on structural and thermal behavior and the properties of concrete that may be used to give added criteria for use in the design of future RCC dams is of secondary importance. Wide spread attention is now being given to the installation of more expensive instrumentation for studying the behavior of concrete dams and reservoirs and forecasting of any adverse trends. In view of this, the paper traces installation and need of the comprehensive instrumentation scheme implemented to monitor the structural and thermal behavior of 102.4 m high RCC dam constructed near Mumbai in India. An attempt is made in the present paper to emphasize the need to undertake an instrumentation program and evaluate their performance during construction and post construction stage of RCC structures. Few typical results, regarding the thermal and structural behavior of the dam, obtained through instrumentation installed at the dam site are presented and compared with the design considerations. The fair agreement is seen in the response observed through instrumentation with that governing the design criteria.

Integrated Monitoring System of Maglev Guideway based on FBG Sensing System (FBG 센서 기반의 자기부상열차 통합 모니터링 시스템)

  • Chung, Won-Seok;Kang, Dong-Hoon;Yeo, In-Ho;Lee, Jun-S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.761-765
    • /
    • 2008
  • This study presents an effective methodology on integrated monitoring system for a maglev guideway using WDM-based FBG sensors. The measuring quantities include both local and global quantities of the guideway response, such as stains, curvatures, and vertical deflections. The strains are directly measured from multiplexed FBG sensors at various locations of the test bridge followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the Bernoulli beam theory and regression analysis. Frequency contents obtained from the proposed method are compared with those from a conventional accelerometer. Verification tests were conducted on the newly-developed Korean Maglev test track. It has been shown that good agreement between the measured deflection and the estimated deflection is achieved. The difference between the two peak displacements was only 3.5% in maximum and the correlations between data from two sensing systems are overall very good. This confirms that the proposed technique is capable of tracing the dynamic behavior of the maglev guideway with an acceptable accuracy. Furthermore, it is expected that the proposed scheme provides an effective tool for monitoring the behavior of the maglev guideway structures without electro magnetic interference.

  • PDF

The Stability and Characteristic Analysis of Cut Slope Behavior using Real-time Monitoring System (상시 계측시스템을 이용한 붕괴 절토사면 거동 특성 분석 및 안정성 해석)

  • Baek, Yong;Koo, Ho-Bon;Jang, Ki-Tae;Yoo, Byung-Sun;Bae, Gyu-Jin
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2004
  • The failure of cut slopes frequently occurs particularly during the thawing season and the rain season in summer. This study interpreted data collected from site to which a real-monitoring system was applied in order to analyze the causes of ground behaviors and to forecast future slope failure. As for research methods, this study analyzed the size and mechanism of failure by integrating the results of field surveys and measurements. Furthermore, it analyzed data transmitted by the monitoring system installed in the a result, three times of ground displacement occurred as well as a number of partial tension cracks. The cut slope composed of sandstone and siltstone started its initial behavior as a result of torrential downpour and the loss of support of the substructure. For quantitative analysis of the characteristics of ground behavior, this study measured 5 lateral lines. According to the result of the measurement, displacement happened little in the section to which countermeasure had been applied, but displacement of maximum 400mm happened in the section to which countermeasure had not bee applied. The analysis of data on displacement and rainfall suggested a close relationship between ground behavior and rainfall. According to the result of stability interpretation along with the change of ground saturation, stability rate appeared to be less than 1.0 when ground saturation is over 55%. Although the current trend of ground behavior is at a stable stage falling within the range of tolerance, it is considered necessary to continue monitoring and data analysis because ground displacement is highly possible with the change of temperature during the winter.

A Study on Situational Self-image, Clothing Selection Factors based on Level of Self-Monitoring of Female University Students (여대생의 자아조정 수준에 따른 상황별 자아이미지, 의복선택 요인에 관한 연구)

  • 이은숙;박재옥
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.7
    • /
    • pp.1205-1214
    • /
    • 1997
  • The purpose of this study is to positively investigate if the theory of self-monitoring among various individual trait theories would be a theoretical concept which can explain about the differences of clothing behavior under given social situations among Female university students in Korea. For this purpose, the following research problem were set up; 1. Self-monitoring levels and changing differences of self-image as per situation would be reviewed. 2. Self-monitoring levels and changing differences of clothing selection factors as per situation would be reviewed. The results of this study can be summarized as follows; First, as a result of analyzing the differences of situational self-image pursuits within per situation depending on individuals self-monitoring levels, the differences were found significant by. Namely, the adjectives for situational self-image which corresponded to those who had high self-monitoring than low self.monitoring were "womanly", "refined", "sensual", "lively" and "elegant". Second, as a result of analyzing the differences of priority of clothing selection factors within per situation depending on individuals self-monitoring levels, the differences were found significant by. Those who had high self-monitoring level put a higher priority on fashionability, aesthetics and status.symbol of clothing within per situation, while those who had low self-monitoring thought important for economy or utility within per situation.rtant for economy or utility within per situation.

  • PDF

Changes in Environmental Attitudes of Middle and High School Students after Anuran Call Monitoring (무미양서류의 음성 신호를 이용한 생물 모니터링의 수행에 따른 중. 고등학생들의 환경 인식 변화)

  • Kim Su-Kyung;Sung Ha-Cheol;Park Dae-Sik;Park Shi-Ryong
    • Hwankyungkyoyuk
    • /
    • v.19 no.1 s.29
    • /
    • pp.104-115
    • /
    • 2006
  • This study was conducted to investigate whether attitudes and recognitions of middle and high school students regarding environmental concerns were improved after anuran call monitoring. It was a step toward monitoring local environmental changes with anuran calls. Three-striped pond frogs (Rana nigromaculata), Bullfrogs (R. catesbeiana), and Narrow-mouthed toads (Kaloula borealis) were surveyed to determine local abundance and distribution of them in 12 study sites using their advertising calls. A published booklet, which contains morphological, physiological, ecological, and acoustic information on amphibian species and methods of monitoring anuran calls were provided to monitoring students for identifying the three species. Pretest-posttest were conducted before and after monitoring from 10 April to 28 August in 2005 to determine how the monitoring students changed their attitudes on environmental issues, increased knowledges on amphibians, and improved the understanding on the cause and effect of declining amphibian populations. The amphibian monitoring program was effective to improve the students' attitudes towards conserving environments as well as the students' knowledge on general behavior and ecology of various amphibian species although their understanding about various environmental problems was not. In addition, the program increased the students' understanding on the problems of declining amphibian populations.

  • PDF